PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault tree analysis of train rear-end collision accident considering common cause failure

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza drzewa uszkodzeń dla kolizji tylnej części składu pociągu z uwzględnieniem uszkodzenia spowodowanego wspólną przyczyną
Języki publikacji
EN
Abstrakty
EN
Along with the development of modern design technology and the increasing complication of modern engineering systems, component dependency has become a universal phenomenon during the failure analysis of systems. Ignoring the dependency among the failure behaviors of system components may lead to a huge error or even yield faulty results. In this paper, three types of models and two kinds of modeling methods are introduced for solving the common cause failure issues. The fault tree model of the train rear-end collision accident has been proposed based on the explicit modeling method. The probability of occurrence of the train rear-end collision accident is calculated using the square root model. The result shows that common cause failure has significant influences on the system reliability.
PL
Wraz z rozwojem nowoczesnych technologii projektowania i rosnącej komplikacji nowoczesnych systemów inżynierskich, zależność między komponentami stała się zjawiskiem powszechnym w analizie uszkodzeń systemów. Ignorowanie zależności między zachowaniami uszkodzeniowymi komponentów systemu może doprowadzić do ogromnego błędu, a nawet dać całkowicie błędne wyniki. W niniejszej pracy, przedstawiono trzy typy modeli i dwa rodzaje metod modelowania służących do rozwiązywania typowych problemów związanych z uszkodzeniami spowodowanymi wspólną przyczyną. Zaproponowano model drzewa uszkodzeń dla kolizji tylnej części składu pociągu w oparciu o metodę modelowania bezpośredniego. Prawdopodobieństwo wystąpienia kolizji tylnej części składu pociągu obliczono przy użyciu modelu pierwiastka kwadratowego. Wynik pokazuje, że uszkodzenie spowodowane wspólną przyczyną ma znaczący wpływ na niezawodność systemu.
Rocznik
Strony
403--408
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • School of Mechanical, Electronic, and Industrial Engineering University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone Chengdu, Sichuan, P. R. China, 611731
autor
  • School of Mechanical, Electronic, and Industrial Engineering University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone Chengdu, Sichuan, P. R. China, 611731
autor
  • School of Mechanical, Electronic, and Industrial Engineering University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone Chengdu, Sichuan, P. R. China, 611731
autor
  • School of Mechanical, Electronic, and Industrial Engineering University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone Chengdu, Sichuan, P. R. China, 611731
autor
  • School of Mechanical, Electronic, and Industrial Engineering University of Electronic Science and Technology of China No. 2006, Xiyuan Avenue, West Hi-Tech Zone Chengdu, Sichuan, P. R. China, 611731
Bibliografia
  • 1. American Public Transportation Association, Member Services Department. Manual of Standards and Recommended Practices for Passenger Rail Equipment, 2004.
  • 2. Association of American Railroads, Technical Services Division. Mechanical Section-Manual of Standards and Recommended Practices. Locomotive Crash worthiness Requirements, Standard S-580, 2005.
  • 3. Börcsök J, Schaefer S. Estimation and evaluation of common cause failures. Proceedings of the 2nd International Conference on Systems 2007 (ICON’07), Martinique, French, 2007: 41–46.
  • 4. Cao SG, Chang YG, Wu G. Reliability analysis of launch control system with common cause failure. Journal of Sichuan Ordnance 2009; 30(11): 78–80.
  • 5. Das A, Abdel-Aty MA. A combined frequency severity approach for the analysis of rear-end crashes on urban arterials. Safety Science 2011; 49(8-9): 1156–1163.
  • 6. Fleming KN. A reliability model for common cause failures in redundant safety systems. Proceedings of the 6th Annual Pittsburgh Conference on Modeling and Simulation, University of Pittsburgh, 1975: 579–581.
  • 7. Fleming KN, Mosleh A, Kelley AP. On the analysis of dependent failures in risk assessment and reliability evaluation. Nuclear Safety 1983; 24(5): 637–657.
  • 8. Jin X, Hong YJ, Du H. Reliability analysis method of common cause failure system. Beijing: National Defense Industry Press, 2008.
  • 9. Kančev D, Cepin M. Limitations of explicit modeling of common cause failures within fault trees. Proceedings of Annual Reliability and Maintainability Symposium (RAMS), Reno, NV, USA, 2012: 1–6.
  • 10. Levitin G. Incorporating common-cause failures into nonrepairable multistate series-parallel system analysis. IEEE Transactions on Reliability 2001; 50(4): 380–388.
  • 11. Li ZZ. Fault tree analysis of train crash accident and discussion on safety of complex systems. Industrial Engineering and Management 2011; 16(4): 1–8.
  • 12. Milho JF, Ambrósio JAC, Pereira MFOS. Validated multibody model for train crash analysis. International Journal of Crashworthiness 2003; 8(4): 339–352.
  • 13. Mosleh A, Siu NO. A multi-parameter event-based common-cause failure model. Proceedings of the 9th International Conference on Probabilistic Safety Assessment Management (PSA’87) 1987; Zurich, Switzerland, 1987; 1: 67–73.
  • 14. Tyrell D. U.S. Rail equipment crashworthiness standards. “What can We Realistically Expect from Crashworthiness?” Rail Equipment Crashworthiness Symposium, Institute of Mechanical Engineers, London, England, 2001.
  • 15. Tyrell D, Jacobsen K, Martinez E, Perlman AB. A train-to-train impact test of crash energy management passenger rail equipment: structural results. Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE 2006), Chicago, Illinois, USA, 2006: 1–10.
  • 16. Tyrell D, Martinez E, Jacobsen K, Parent D, Severson K, Priante M, Perlman AB. Overview of a crash energy management specification for passenger rail equipment. Proceedings of the 2006 IEEE/ASME Joint Rail Conference (JRC2006), Atlanta, GA, USA, 2006; 131–140.
  • 17. Tyrell D, Severson KJ, Marquis BJ. Crashworthiness of Passenger Trains. U.S. Department of Transportation, DOT/FRA/ORD-97/10, 1998.
  • 18. U.S. Department of Transportation, Federal Railroad Administration, 49 CFR Part 216 et al. Passenger Equipment Safety Standards, Final Rule. Federal Register, 1999.
  • 19. Vaurio JK. Availability of redundant safety systems with common mode and undetected failures. Nuclear Engineering and Design 1980; 58(3): 415–424.
  • 20. Vesley W, Dugan J, Fragola J, Minarick J, Railsback J. Fault tree handbook with aerospace applications. NASA, Washington, DC 20546, 2002.
  • 21. Volkanovski A, Čepin M, Mavko B. Application of the fault tree analysis for assessment of power system reliability. Reliability Engineering & System Safety 2009; 94(6): 1116–1127.
  • 22. Wang XM. A new system reliability model considering common cause failure. Shenyang: Northeastern University, 2005.
  • 23. Xing L. Incorporating common-cause failures into the modular hierarchical systems analysis. IEEE Transactions on Reliability 2009; 58(1): 10–19.
  • 24. Y.F. Li, H.Z. Huang, Y. Liu, N.C. Xiao, H.Q. Li. A new fault tree analysis method: fuzzy dynamic fault tree analysis. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14(3): 208–214.
  • 25. Zhou JY, Xie LY. Common cause failure mechanism and risk probability quantitative estimation of multi-state systems. Chinese Journal of Mechanical Engineering 2008; 44(10): 77–81.
  • 26. Zhou ZB. Probabilistic safety assessment research and application based on Bayesian networks. Changsha: National University of Defense Technology, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4cc08e2-5634-47ec-8cf4-67f00953ec93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.