PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Temperature on Fe and Ti in Carbothermic Reduction of Vanadium Titanomagnetite with adding MgO

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of temperature on Fe and Ti in carbothermic reduction of vanadium titanomagnetite (VTM) concentrate with adding MgO at 1100~1500℃ were investigated. It was found that most of Fe in the VTM concentrate existed in the form of magnetite and a small amount existed as ilmenite; Ti in the VTM concentrate was mainly present in the form of ilmenite. The temperature had significant effects on Fe and Ti: increasing temperature was beneficial to decrease the Fe content in the magnesium titanate mixture, and the Fe content could decrease to 5.47% at 1500℃. Thermodynamic analysis showed that FeTiO3 and MgO preferentially reacted to form Mg2TiO4, followed by MgTiO3 and MgTi2O5 when the temperature increased from 1100℃ to 1500℃. Results of X-ray diffraction and scanning electron microscopy-energy dispersive spectroscopy analyzes showed that an intermediate product of MgFe2O4 would formed at 1300~1400℃ in the actual experiment. This caused the Fe content in the magnesium titanate mixture to increase from 21.32% to 22.85% when the temperature increased from 1200℃ to 1400℃. In addition, the size of magnesium titanate particles could increase from a few microns to approximately 100 µm when the temperature increased from 1100℃ to 1500℃, which was conducive to realize the separation of metallic iron and magnesium titanate.
Rocznik
Strony
917--927
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • University of Science and Technology Beijing
autor
  • University of Science and Technology Beijing
autor
  • University of Science and Technology Beijing
autor
  • University of Science and Technology Beijing
  • University of Science and Technology Beijing
Bibliografia
  • CHEN, C., SUN, T., C., WANG, X., P., HU, T., Y., 2017. Effects of MgO on the Reduction of Vanadium Titanomagnetite Concentrates with Char. JOM. 69(10), 1759-1766.
  • CHENG, G., J., GAO, Z., X., LV, M., Y., YANG, H., XUE, X., 2017. Coal-based reduction and magnetic separation behavior of low-grade vanadium-titanium magnetite pellets. Minerals. 7, 86-100.
  • CHENG, L., LIU, P., QU, S., X., ZHANG, H., W., 2015. Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. Journal of Alloys & Compounds, 623, 238-242.
  • CHEN, S., Y., CHU, M., S., 2014. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting. International Journal of Minerals, Metallurgy, and Materials. 21(3), 225-233.
  • GAO, E., X., SUN, T., C., LIU, Z., G., GENG, C., XU, C., Y., 2016. Effect of sodium sulfate on direct reduction of beach titanomagnetite for separation of iron and titanium. Journal of iron and steel research, international. 23(5), 428-433.
  • GAO, E., X., SUN, T., C., XU, C., Y., LIU, Z., G., LIU, Z., Z., YU, C., X., 2013. Coal-based reduction and magnetic separation behavior of low-grade vanadium-titanium magnetite pellets. Metal Mine. (11), 46-48.
  • GENG, C., SUN, T., C., YANG, H., F., MA, Y., W., GAO, E., Y., XU, C., Y., 2015. Effect of Na2SO4 on the Embeddingdirect reduction of beach titanomagnetite and the separation of titanium and iron by magnetic separation. ISIJ International. 55, 2543-2549.
  • ISOBE, M., UEDA, Y., 2004. Synthesis, structure and physical properties of spinel solid solutions Mg2TiO4–MgTi2O4. Journal of Alloys and Compounds. 383, 85-88.
  • JIANG, T., WANG, S., GUO, Y., CHEN, F., ZHENG, F., 2016. Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process. Metals. 6(5), 107-122.
  • KOPFLE, J., HUNTER, R., 2008. Direct reduction's role in the world steel industry. Ironmaking & Steelmaking. 35(4), 254-259.
  • LIU, Y., ZHANG, J., LIU, Z., XING, X., 2016. Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand. International Journal of Minerals, Metallurgy, and Materials. 23(7), 760-768.
  • LI, Z., H., WANG, L., Q., LI, K.,Y., 2012. Preparation of magnesium titanate nanosheets by a modified sol–gel method. Materials Focus, 1(3), 234-238.
  • MAO H., X., ZHANG R., LV X., W., BAI C., G., HUANG X., B., 2013,. Effect of surface properties of iron ores on their granulation behavior. ISIJ International. 53(9), 1491-1496.
  • NEAL, A., L., ROSSO, K., M., GEESEY, G., G., GORBY, Y., A., LITTLE, B., J., 2003. Surface structure effects on direct reduction of iron oxides by Shewanella oneidensis. Geochimica ET Cosmochimica Acta. 67(23), 4489-4503.
  • OHSATO, H., 2005. Research and development of microwave dielectric ceramics for wireless communications. Journal of the Ceramic Society of Japan, 113(1323), 703-711.
  • PAN, F., DU, Z., ZHANG, M.,J., SUN, H., Y., 2017. Relationship between the phases, structure, MgO migration and the reduction performance of the pre-oxidized vanadium-titanium magnetite ore in a fluidized bed. ISIJ International. 57, 413-419.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4be43c0-90a9-4a9d-a5db-7ffca7cc1aeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.