PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calibration of Selected Bulk Biomaterials Parameters for DEM Simulation of Comminution Process. Case Study: Corn and Rice Grains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computer simulation of bulk materials behavior, including comminution and fragmentation, using DEM has been growing fast, recently. One of the important tasks to get the reliable simulation results is to provide proper materials and contact parameters, which need to be determined in a series of laboratory experiments. For comminution simulation the additional parameters describing the breakage probability and breakage functions are necessary. While some simulation parameters are available in the literature for brittle materials, valid data are lacking for biomaterials such as cereal, rice or corn grains, especially for comminution parameters. The aim of this study was to present the calibration approach and determination of materials, contact, interaction and breakage parameters for grainy biomaterials. The calibration process was done for rice and corn grains. The calibration approach consists of grains size distribution and shape characterization, friction and restitution coefficient determination, and breakage probability description. Based on the results of the experiments, the models were created in the DEM software. The result was the set of calibrated parameters for rice and corn grains.
Twórcy
  • Department of Machines and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, al. Prof. S. Kaliskiego 7, 85-793 Bydgoszcz, Poland
autor
  • VSB – Technical University of Ostrava, CEET, ENET Centre, Bulk Solids Centre, 17. Listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Department of Mining Engineering and Safety, VSB – Technical University of Ostrava, Faculty of Mining and Geology, 17. Listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
autor
  • VSB – Technical University of Ostrava, CEET, ENET Centre, Bulk Solids Centre, 17. Listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Department of Mining Engineering and Safety, VSB – Technical University of Ostrava, Faculty of Mining and Geology, 17. Listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Poznan University of Technology, Institute of Machine Design, Faculty of Mechanical Engineering, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Department of Mining Engineering and Safety, VSB – Technical University of Ostrava, Faculty of Mining and Geology, 17. Listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
Bibliografia
  • 1. Tavares L.M., Cavalcanti P.P., de Carvalho R.M., da Silveira M.W., Bianchi M., Otaviano M. Fracture Probability and Fragment Size Distribution of Fired Iron Ore Pellets by Impact. Powder Technol. 2018; 336: 546–554.
  • 2. Cavalcanti P.P., Tavares L.M. Statistical Analysis of Fracture Characteristics of Industrial Iron Ore Pellets. Powder Technol. 2018; 325: 659–668.
  • 3. Wiercioch M., Niemiec A., Roma L. The impact of wheat seeds size on energy consumption of their grinding process. Inżynieria Rol. 2008; 103: 367–372.
  • 4. Dziki D., Laskowski J. Influence of Wheat Kernel Geometrical Properties on the Mechanical Properties and Grinding Ability. Acta Agrophys. 2003; 2: 735–742
  • 5. Kruszelnicka W., Bałdowska-Witos P., Kasner R., Flizikowski J., Tomporowski A., Rudnicki J. Evaluation of Emissivity and Environmental Safety of Biomass Grinders Drive. Przem. Chem. 2019; 98: 1494–1498.
  • 6. Werechowska M. Some Physical Properties of Cereal Grain and Energy Consumption of Grinding. Agric. Eng. 2014; 1(149): 239–249.
  • 7. Atashbar N.Z., Labadie N., Prins C. Modelling and Optimisation of Biomass Supply Chains: A Review. Int. J. Prod. Res. 2018; 56: 3482–3506.
  • 8. Jewiarz M., Wróbel M., Mudryk K., Szufa S. Impact of the Drying Temperature and Grinding Technique on Biomass Grindability. Energies. 2020; 13: 3392.
  • 9. Bembenek M. Exploring Efficiencies: Examining the Possibility of Decreasing the Size of the Briquettes Used as the Batch in the Electric Arc Furnace Dust Processing Line. Sustainability. 2020; 12: 6393.
  • 10. Hryniewicz M., Bembenek M., Janewicz A., Kosturkiewicz B. Brykietowanie materiałów drobnoziarnistych w prasach walcowych z niesymetrycznym układem zagęszczania. Przem. Chem. 2015; 94: 2223–2226.
  • 11. Kovács Á., Kerényi G. Physical Characteristics and Mechanical Behaviour of Maize Stalks for Machine Development. Int. Agrophysics. 2019; 33: 427–436.
  • 12. Winkler R. MeteoMex: open infrastructure for networked environmental monitoring and agriculture 4.0. PeerJ Computer Science. 2021; 7: e343.
  • 13. Aghi D., Mazzia V., Chiaberge M. Local motion planner for autonomous navigation in vineyards with a rgb-d camera-based algorithm and deep learning synergy. Machines. 2020; 8: 27.
  • 14. Kumar R., Karmakar S., Minz A., Singh J., Kumar A., Kumar, A. Assessment of Greenhouse Gases Emission in Maize-Wheat Cropping System Under Varied N Fertilizer Application Using Cool Farm Tool. Frontiers in Environmental Science. 2021; 9: 710108.
  • 15. Landoni M., Cassani E., Ghidoli M., Colombo F., Sangiorgio S., Papa G., Adani F., Pilu R. Brachytic mutation is able to counteract the main pleiotropic effects of brown midrib mutant in maize. Scientific Reports. 2022; 12(1): 2446.
  • 16. Rodrigo D., Rosell C.M., Martinez A. Risk of Bacillus cereus in Relation to Rice and Derivatives. Foods. 2021; 10: 302.
  • 17. Soto-Gómez D., Pérez-Rodríguez P. Sustainable agriculture through perennial grains: Wheat, rice, maize, and other species. A review. Agriculture, Ecosystems and Environment. 2022; 325: 107747.
  • 18. Chhabra N., Kaur A. Studies on Physical and Engineering Characteristics of Maize, Pearl Millet and Soybean. J. Pharmacogn. Phytochem. 2017; 6: 1–5.
  • 19. Chandravarnan P., Agyei D., Ali A. Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends in Food Science and Technology. 2022; 124: 278-295.
  • 20. Kruszelnicka W. Study of Physical Properties of Rice and Corn Used for Energy Purposes. In Proceedings of the Renewable Energy Sources: Engineering, Technology, Innovation, Krynica, Poland, 20–22 June 2020, Wróbel, M., Jewiarz, M., Szlęk, A., Eds., Springer International Publishing: Berlin/Heidelberg, Germany 2020, 149–162.
  • 21. Flizikowski J.B., Kruszelnicka W., Tomporowski A., Mrozinski A. A Study of Operating Parameters of a Roller Mill with a New Design. AIP Conf. Proc. 2019; 2077: 020018.
  • 22. Kowalczyk-Juśko A., Kowalczuk J., Szmigielski M., Marczuk A., Jozwiakowski K., Zarajczyk K., Maslowski A., Slaska-Grzywna B., Sagan A., Zarajczyk J. Quality of biomass pellets used as fuel or raw material for syngas production. Przem. Chem. 2015; 94: 1835–1837.
  • 23. Li Y., Qin T., Chen J., Zhao Z. Experiments and Analysis on Mechanical Property of Corn Stalk Reciprocating Cutting. Trans. Chin. Soc. Agric. Eng. 2011; 27: 160–164.
  • 24. Moya M., Aguado P.J., Ayuga F. Mechanical Properties of Some Granular Agricultural Materials Used in Silo Design. Int. Agrophysics. 2013; 27: 181–193.
  • 25. Chel-Guerrero L., Parra-Pérez J., Betancur-Ancona D., Castellanos-Ruelas A., Solorza-Feria J. Chemical, Rheological and Mechanical Evaluation of Maize Dough and Tortillas in Blends with Cassava and Malanga Flour. J. Food Sci. Technol. 2015; 52: 4387–4395.
  • 26. Li W., Du Y., Liu L., Mao E., Yang F., Wu J., Wang L. Research on the constitutive model of low-damage corn threshing based on DEM, Comput. Electron. Agric. 2022; 194: 106722.
  • 27. Tang Z., Li Y., Zhang B., Wang M., Li Y. Controlling Rice Leaf Breaking Force by Temperature and Moisture Content to Reduce Breakage. Agronomy. 2020; 10: 628.
  • 28. Kruszelnicka W. Study of Selected Physical-Mechanical Properties of Corn Grains Important from the Point of View of Mechanical Processing Systems Designing. Materials. 2021; 14: 1467.
  • 29. Kim T.H. Physical Changes in Maize (Zea mays L.) Grains during Postharvest Drying, Massey University: Palmerston North, New Zeland 2000, 239.
  • 30. American Society of Agricultural and Biological Engineers ASAE S368.4 DEC2000 (R2008): Compression Test of Food Materials of Convex Shape 2008.
  • 31. Gierz Ł., Kruszelnicka W., Robakowska M., Przybył K., Koszela K., Marciniak A., Zwiachel T. Optimization of the Sowing Unit of a Piezoelectrical Sensor Chamber with the Use of Grain Motion Modeling by Means of the Discrete Element Method. Case Study: Rape Seed. Appl. Sci. 2022; 12: 1594.
  • 32. LoCurto G.J., Zhang X., Zarikov V., Bucklin R. A., Vu-Quoc L., Hanes D.M., Walton O.R. Soybean impacts: Experiments and dynamic simulations. Trans. ASAE. 1997; 40(3): 789-794.
  • 33. Chung Y.C., Ooi J.Y., Favier J.F. Measurement of mechanical properties of agricultural grains for DEM models. InProc. 17th ASCE Engineering Mechanics Conf. American Society of Civil Engineers, Newark, Del, 2004.
  • 34. Wang S., Yu Z., Aorigele, Zhang W. Study on the modeling method of sunflower seed particles based on the discrete element method. Computers and Electronics in Agriculture. 2022; 198: 107012.
  • 35. Lupu M.I., Pădureanu V., Canja C.M., Măzărel A. The Effect of Moisture Content on Grinding Process of Wheat and Maize Single Kernel. IOP Conf. Ser. Mater. Sci. Eng. 2016; 145: 022024.
  • 36. Seifi M.R., Alimardani R. The Moisture Content Effect on Some Physical and Mechanical Properties of Corn (Sc 704). J. Agric. Sci. 2010; 2: 125.
  • 37. Seifi M.R., Alimardani R. Comparison of Moisture-Dependent Physical and Mechanical Properties of Two Varieties of Corn (Sc 704 and Dc 370). Aust. J. Agric. Eng. 2010; 1: 170–178.
  • 38. Sun H., Zeng Y., Ye Y., Chen X., Zeng T. Abnormal Size Effect of Particle Breakage Probability under Repeated Impacts. Powder Technol. 2020; 363: 629–641.
  • 39. Bwalya M.M., Chimwani N. Development of a More Descriptive Particle Breakage Probability Model, Minerals. 2020; 10(8): 710.
  • 40. Maaß S., Kraume M. Determination of Breakage Rates Using Single Drop Experiments. Chem. Eng. Sci. 2012; 70: 146–164.
  • 41. ISO 13322-2:2006 Particle Size Analysis – Image Analysis Methods – Part 2: Dynamic Image Analysis Methods 2006.
  • 42. Hlosta J., Jezerská L., Rozbroj J., Žurovec D., Nečas J., Zegzulka J. DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 1–Determination of the DEM Parameters and Calibration Process. Processes. 2020, 8: 222.
  • 43. Wensrich C.M., Katterfeld A. Rolling Friction as a Technique for Modelling Particle Shape in DEM. Powder Technol. 2012; 217: 409–417.
  • 44. Nečas J., Rozbroj J., Hlosta J., Diviš J., Kaprálek J., Žurovec D., Zegzulka J. Shear Lid Motion in DEM Shear Calibration and the Effect of Particle Rearrangement on the Internal Friction Angle. Powder Technol. 2022; 403: 117417.
  • 45. Hlosta J., Žurovec D., Rozbroj J., Ramírez-Gómez Á., Nečas J., Zegzulka J. Experimental Determination of Particle–Particle Restitution Coefficient via Double Pendulum Method. Chem. Eng. Res. Des. 2018; 135: 222–233.
  • 46. Fengnian S., Kojovic T. Validation of a Model for Impact Breakage Incorporating Particle Size Effect. Int. J. Miner. Process. 2007; 82: 156–163.
  • 47. Tavares L.M. Optimum Routes for Particle Breakage by Impact. Powder Technol. 2004; 142: 81–91.
  • 48. Tavares L.M. Analysis of Particle Fracture by Repeated Stressing as Damage Accumulation. Powder Technol. 2009; 190: 327–339.
  • 49. Tavares L.M., André F.P., Potapov A., Maliska C. Adapting a breakage model to discrete elements using polyhedral particles. Powder Technol. 2020; 362: 208–220.
  • 50. Sarker M.S.H., Hasan S.M.K., Ibrahim M.N., Aziz N.A., Punan Mohd. S. Mechanical Property and Quality Aspects of Rice Dried in Industrial Dryers. J. Food Sci. Technol. 2017; 54: 4129–4134.
  • 51. Tavares L.M., de Almeida R.F. Breakage of green iron ore pellets. Powder Technol. 2020, 366: 497–507.
  • 52. Beakawi Al-Hashemi H.M., Baghabra Al-Amoudi O.S. A review on the angle of repose of granular materials. Powder Technol. 2018; 330: 397–417.
  • 53. Chen H., Zhao S., Zhou X. DEM Investigation of angle of repose for super-ellipsoidal particles. Particuology. 2020; 50: 53–66.
  • 54. Wei H., Li M., Li Y., Ge Y., Saxén H., Yu Y. Discrete element method (DEM) and experimental studies of the angle of repose and porosity distribution of pellet pile. Processes. 2019; 7: 561.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4be208e-0a1e-4aac-bd8d-9a652f9f64ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.