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Abstract. This article is motivated by the problem of finding a graph, which operates on 

the principle of the Hasse diagram. In the present article, the Hasse diagram technique 

(HDT) was applied to relate binary string sets with graph theory. We investigate this 

relation in detail and propose a new graph, the so-called 2n-Parallel Graph �2����, and 

an efficient pseudo code that decompresses a given binary string set to its elements. 

The goal of this pseudo code is its application in determining the number of strings with 

a certain number of first bits consecutive 1’s (0’s). This pseudocode is also responsible 

for the solution of several combinatorial problems on a certain binary string. Furthermore, 

our results are valid for any string length.  
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1. Introduction  

As we know, binary strings can be decoded using a binary tree. To read that 

string from any prescribed position forward, one starts at the root and moves down 

from the root of the tree to the external node that holds that character: a 0 bit identi-

fies a left branch in the path, and a 1 bit identifies a right branch. This procedure 

is continued until the bit string of length n is decoded. But with an increase 

in the length of the string, the binary tree becomes more complicated [1]. 

So we look for another way to represent binary strings that will allow us to 

minimize the number of branches in our drawing. Looking to simplify the problem 

we have defined a new graph that works by use of the Hasse diagram technique. 

2. Basic notions  

All graphs considered here are simple, finite, connected and undirected. We 

follow the basic notions and terminologies of graph theory as in [1].  
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Definition 2.1. A graph � = �����,����� consists of two sets; ���� = 

= �	�,	�, … 
 called vertex set of � and ���� = ���, ��, … 
 called edge set of �. 
More precisely we denote the vertex set of � as �(�) and the edge set of � as 
�(�). Elements of �(�) and �(�) are called vertices and edges, respectively. 

The number of vertices in �(�) is denoted by |����| and the number of edges 
in ���� is denoted by |����|.  

Definition 2.2. A walk in which no vertex is repeated is called a simple path. 

A path with 
 vertices is denoted as ��.  
Definition 2.3. A graph � is connected if there is a path between every pair 

of vertices of �. A graph, which is not connected, is called a disconnected graph.  
Definition 2.4. [2] A graph � with 
 ≥ 2

 
vertices is called a path if � has 

exactly two vertices with degree 1 and exactly 
 − 2
 
vertices with degree 2.  

Definition 2.5. A simple path in a graph � that passes through every vertex 
exactly once is called a Hamilton path, and a simple circuit in a graph � that passes 
through every vertex exactly once is called a Hamilton circuit. 

Theorem 2.1. [3] Let � be a finite connected graph on n vertices. Then � con-
tains at least 
 − 1 edges, with equality if and only if � is a tree.  

Here we review some basic definitions and notions concerning posets (partially 

ordered set) and the Hasse diagram. 

Definition 2.6. [2] A Hasse diagram � is a directed graph representation of 
a poset � whose vertices represent elements of � and whose directed edges signify 
the " ≤ " relation. That is, an edge 	 → � means 	 ≤ �.  

In other words, the Hasse diagram �	of poset � is defined: 
(1) ���� = � 
(2) ���� = �	 → ��	,� ∈ �,	 ≤ �,  ∄� ∈ � ���ℎ	�ℎ��		 ≤ � ≤ ���  

and in this case we say that � covers 	, so that the line segment from 	 to � runs 
upwards �. 

If we assume that all edges are pointed “upward”, we do not have to show 

the directions of the edges. 

The objects (vertices) in a Hasse diagram that are not covered by other objects 

are called “maximal objects.” Objects that do not cover other objects are called 

“minimal objects.” In some diagrams there are also isolated objects that can be 

considered as maximal and minimal objects at the same time. A chain (string) 

is a set of comparable objects; therefore levels can be defined as the longest chain 

within the diagram. An antichain is a set of mutually incomparable objects, located 

at one and the same level. The height of the diagram is the longest chain, and 

the longest antichain is its width [4]. 
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3. 2n Parallel Graph (2nPG)  

Let Σ be the set �0,1
. Then the set of all finite binary strings of length 
 is 
written as Σ�

∗ . Σ�
∗  can be ordered by the prefix relation: for �, 	 ∈ Σ�

∗ , � is a prefix 
of 	 if either � = 	 or � is a finite initial substring of 	. We write � ≤ 	 if � is 
a prefix of 	 and �‖	� if neither � nor 	 is a prefix of the other (some authors 
write � ∦ 	). For each set of binary strings of length 
 there is |Σ�

∗ | = 2� .  
For brevity, we give the following definition.  

Definition 3.1. [5] Let � ≡ ��,��, … , �� be an element of Σ�
∗ . Weight of �, 

denoted by ����,	is defined as ���� = ∑ ���

��� .  

For example, the string 10011 has weight 3. 

Now we are going to define an efficient graph (which operates on the principle 

of Hasse diagram) for the set of binary strings of length 
 whose weight (number 
of 1s) are in the range �, � + 1, � + 2, … ,� where 0 ≤ � < � ≤ 
.	 

Definition 3.2. 2
 Parallel Graph �2
���	is a graph consisting of 2
 vertexes 
situated in the proportional way in to parallel line. The vertices in first line will be 

denoted with �� where � = 1,2, … ,
 and �� = 1 for ∀�, while vertices in second 
line with 		�  where � = 1,2, … ,
 and 		� = 0 for ∀�. The set of �2
���	edges 
in graph will be defined with � = ���� ,����
, �	� ,	���
, ��� ,	���
, �	� ,����
�, 
for � = 1,2, … ,
 − 1 and all edges are pointed “upward”, which means it works 
by the Hasse diagram technique. 

From the definition of graph �2
��� it follows that the set of vertices � are 
defined by � = ���,��, … ,�� ,	�,	�, … ,	�
 = �1,1, … ,1,0,0, … ,0
 and |�| = 2
.  

The problem of enumeration of all n-bit binary strings is equivalent to finding 

a Hamilton path in the �2
��� graph. Because of the Hasse diagram technique, 
the Hamilton path in �2
��� graph contains only n vertices (not 2n).  

Thinking of binary strings as path in the graph, based on Theorem 1.1, 

the strings of length 
 are mapped to a path of length 
 − 1. So, from this fact we 
conclude that: 

Theorem 3.1. Let Σ�
∗

 
be the set of all finite binary strings of length 
, where 

|Σ�
∗ | = 2� . Then, the graph �2
���, which represents the element of set Σ�

∗   

for 
 ≥ 2 has 4�
 − 1� edges, which means that |��2
���| = 4�
 − 1�. 

Proof: From the definition 3.2, the set of edges of �2
���	graph is the set 
� = ���� ,����
, �	� ,	���
, ��� ,	���
, �	� ,����
�, for � = 1,2, … ,
 − 1. Therefore, 

from the Theorem 1.1, every subset of set � will have 
 − 1 edges and since �  
has four such subsets then follows that |��2
���| = 4�
 − 1�. 

Following, based on the definition 3.2, we will construct a �2
���	graph and 
compare it with binary trees. By representing the set of binary strings with both 

graphs: with �2
���	and by binary tree, we can see the advantages and simplicity 
of the first graph to the second graph. 

Example 3.1. We are going to present the set of binary strings with the �2
��� 
graphs and with the binary trees, for 
 = 2,3,4. Here, for the �2
���	graph we will 
use the Hasse diagram technique. 
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For 
 = 2 we have (Fig. 1a and 1b): 
 

 
|�| = 4 = 2 ∙ 2, |�| = 4�� − 1� = 4 

Fig. 1a. �2���� graph for binary strings of length � = 2 

 
|�| = 7 = 2��� − 1, |�| = 6 = 2��� − 2 

Fig. 1b. Binary tree for binary strings of length � = 2 

In this case we get 2� = 2� = 4 binary strings: 11, 10, 01, 00.  

For 
 = 3 we have (Fig. 2a and 2b): 
 

 
|�| = 6 = 2 ∙ 3, |�| = 4�� − 1� = 8 

Fig. 2a. �2���� graph for binary strings of length � = 3 

 
|�| = 15 = 2��� − 1, |�| = 14 = 2��� − 2 

Fig. 2b. Binary tree for binary strings of length � = 3 
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In this case we get 2� = 2� = 8 binary strings: 111, 110, 101, 100, 000, 001, 

010, 001. 
For 
 = 4 we have (Fig. 3a and 3b): 

 

 
|�| = 8 = 2 ∙ 4, |�| = 4�� − 1� = 12 

Fig. 3a. �2����	graph for binary strings of length � = 4 

 
|�| = 31 = 2��� − 1, |�| = 30 = 2��� − 2 

Fig. 3b. Binary tree for binary strings of length � = 4 

In this case we get 2� = 2� = 16 binary strings: 1111, 1110, 1101, 1100, 
1011, 1001, 1010, 1000, 0000, 0001, 0010, 0011, 0100, 0110, 0101, 0111. 

We can continue to construct, for each 
, a Hamilton path in a �2
��� graph 
with the following additional property: edges between levels � − 1 and � of a �2
��� 
graph must appear on the path before edges between levels � and � + 1. 

Corollary 3.1. Let Σ�
∗

 
be the set of all finite binary strings of length 
, where 

|Σ�
∗ | = 2� . Then, for 
 ≥ 2, the number of edges of a �2
���	graph creates the 

arithmetic sequence �4�
 − 1�
 while the number of edges in a binary tree creates 
the sequence �(2	�� − 2)
. 

Proof: From the example 3.1, we note that the sequence of number of a �2
��� 
graph is: 4, 8, 12, … ,��
� + 4 or the arithmetic sequence with first element �� = 4 

and difference � = 4 (it can be proved with mathematical induction). Also the 

number of edges of binary trees creates the sequence: 6, 14, 30, … , 2��� − 2.  
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Fig. 4. 

Corollary 3.2. Let 

|Σ�
∗ | � 2� . Then, � �

arithmetic sequence �2

the sequence �	2��� 

Proof: From the example 3.1, we note that the sequence of number of vertices 

of a 	2���
 graph is: 

element �� � 4 and difference 
induction). Also the number of edges of binary trees creates the sequence:

7, 15, 31,… , 2��� 
 1. 
In conclusion, based on

the 	2���
 graph, is much more practical because it has a much smaller number of 
vertices and edges compared with the binary tree, in which the number of vertices 

and edges is much larger, and it grow

is the fact that it is easier to draw and takes less space.

In following we will describe the pseudo code that produces a 

4. Pseudocode of a 2

In this section an eff

graph by decompressing a given binary string set to its elements and how does it 

Q.D. Gjonbalaj, V.R. Hamiti 

 

Fig. 4. �2����	graph for binary strings of length � 

Let Σ�
∗

 
be the set of all finite binary strings of length 

2, the number of vertices of a 	2���
	graph creates the 
�2�� while the number of vertices of binary trees creates

1
�.  
From the example 3.1, we note that the sequence of number of vertices 

graph is: 4, 6, 8,… , ���� � 2 or the arithmetic sequence with first 

and difference � � 2 (it can be proved with mathematical
induction). Also the number of edges of binary trees creates the sequence:

  
In conclusion, based on two corollaries and our own example we can see that 

graph, is much more practical because it has a much smaller number of 

vertices and edges compared with the binary tree, in which the number of vertices 

and edges is much larger, and it grows very fast. Also, the advantage of this graph 

is the fact that it is easier to draw and takes less space. 

In following we will describe the pseudo code that produces a 	2���

Pseudocode of a 2n Parallel Graph ������ 

In this section an efficient pseudocode will be provided that produces a 

graph by decompressing a given binary string set to its elements and how does it 

be the set of all finite binary strings of length �, where 

graph creates the 

while the number of vertices of binary trees creates 

From the example 3.1, we note that the sequence of number of vertices 

or the arithmetic sequence with first 

(it can be proved with mathematical 

induction). Also the number of edges of binary trees creates the sequence: 

two corollaries and our own example we can see that 

graph, is much more practical because it has a much smaller number of 

vertices and edges compared with the binary tree, in which the number of vertices 

s very fast. Also, the advantage of this graph 

�
 graph. 

icient pseudocode will be provided that produces a 	2���
 
graph by decompressing a given binary string set to its elements and how does it 
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operates on the principle of Hasse diagram. At the beginning, we give a pseudo-

code and afterwards, we discuss the complexity of our solution. 

The problem of enumeration of all n-bit binary strings is equivalent to finding 

a Hamilton path with n vertices and 
 − 1 edges, in the �2
��� graph, which means 
that at the same time we will determine the binary strings and Hamiltonian paths. 

In that case, we denote with ��� ∈ Σ�
∗  all binary strings of length 
 where 

the first   bits are consecutive 1’s (0’s).  
Our pseudocode for the 2
 Parallel Graph is presented as a method called 

2NPG(n) (cf. Fig. 5) which takes as a parameter the length 
 for each of the binary 
strings that are to be generated. 

 
2NPG(n) 

INPUT: n is the length of each of the binary strings to generate. 

OUTPUT: S is the set of generated binary strings Sk
n
 such that 

• each Sk
n
 is represented with [e1,e2,e3,..,ek–1,ek,ek+1,..,en–1,en], and 

• k represents the nr. of first bits consecutive 1’s in the string to generate. 

1 let initially S � {} // initially is S an empty set of binary strings 

2 for k � n to 1 // for each step below, i.e. distinct nr. of consecutive 1’s 

3 do 2nPG(n, k) // where k <= n 

4 RETURN {Sk
n
}� {[e1,e2,e3,…,ek–1,ek,{ek+1,...,en–1,en}]} 

5 RETURN S � S U{Sk
n
}� {[e1,e2,e3,…,ek–1,ek,ek+1,...,en–1,en]} 

Fig. 5. The 2NPG(n) pseudocode 

We represent with [e1,e2,e3,.., ek-1,ek,ek+1,..,en-1,en] each of the binary strings Sk

n
 

of length n to be generated as elements of the final set S of all binary strings gener-

ated at the output. The S set which is initially an empty set (line 1 in the pseudo-

code) is progressively extended (line 5) for each possible k as first consecutive 1 

bits (line 2) in the strings to generate by recursively invoking the 2NPG(n, k) 

method (line 3 to 4). 

 
2NPG(n, k) 

INPUT: 

• n is the length of each of the binary strings to generate 

• k represents the nr. of first bits consecutive 1’s in the strings to generate. 

OUTPUT: S is the set of generated binary strings Sk
n
 such that 

• each Sk
n
 is represented with [e1,e2,e3,…,ek–1,ek,ek+1,...,en–1,en]. 

1 let initially {Sk
n
} � {} // initially is {Sk

n
} an empty set of binary strings 

2 for i � 1 to k 

3 do ei� ui // assign 1 to ei since u’s are always 1’s 

4 if k ≠ n then ek+1� vk+1 // assign 0 to ei+1 since v’s are always 0’s 

5 if k < n–1 then for i � k+1 to n 

6  do 2nPG(n’) // where n’ = n–k; each S is Sk’
n’
�[ek+1,..,en–1,en] 

7   RETURN {Sk’
n’
}� {[ek+1,...,en–1,en]} 

8 RETURN {Sk
n
}� {Sk

n
} U {[e1,e2,e3,…,ek–1,ek,{ek+1,...,en–1,en}]} 

Fig. 6. The 2NPG(n, k) pseudocode 
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It is obvious that in the very first iteration of the outer for loop in the 2NPG(n) 

pseudocode above where  = 
,	makes the inner for loop in 2NPG(n, k) (lines 3 
to 4) generate a string of length n with all 1’s, i.e. the string Sn

n
 : 

[1,1,1,..,1,1,1] ≡ [u1,u2,u3,...,un–2,un–1,un] 

since lines 5 and 6 to 8 fail due to conditions in line 5 and line 6 evaluating to false. 

Next, due to  = 
 − 1 (refer again to outer for loop in 2NPG(n), this time its 
second iteration), the inner for loop in 2NPG(n, k) (lines 3 to 4) will generate a string 

with 
 − 1 1’s, whereas the last bit 
 of the string will be set to 0 (line 5) since the 
condition in line 5 evaluates to true, i.e. the following string Sn–1

n
: will be generated 

at the output: 

[1,1,1,..,1,1,0] ≡ [u1,u2,u3,...,un–2,un–1,vn] 

Note that lines 6 to 8 fail due to condition in line 6 evaluating to false. 

In every other next iteration of the outer for loop in 2NPG(n) starting from 

the 3
rd
 iteration, i.e., for  = 
 − 2 to  = 1, both conditions (lines 5 and 6) in the 

inner for loop in 2NPG(n, k) are evaluated to true. As a consequence, another for 

loop is initiated (line 6) which recursively uses the Hasse diagram techniques but 

for shorter strings of length n’ to generate at the output at each iteration by invok-

ing the 2nPG(n’) method (line 7), resulting into a subset {Sk’

n’
} of such strings 

[ek+1,...,en–1,en] per iteration. 

As an illustration, two next iterations in the 2NPG(n) pseudocode of the outer 

for loop where  = 
 − 2, = 
 − 3, up to its last iteration where  = 1 are 
explained. 

1. We create the binary strings where the first n-2 bits are 1’s, the set of strings 

denoted as {Sn–2

n
}: 

[1,1,1,...,1,0,?] ≡ [u1,u2,u3,...,un–2,vn–1,vn] and 

[1,1,1,...,1,0,?] ≡ [u1,u2,u3,...,un–2,vn–1,un] 

where the last bit 

un or vn 

is determined based on the Hasse diagram technique, i.e. are the output of the 

2nPG(n’) method (line 7) within the 2nPG(n, k) pseudocode. 

2. We create the binary strings where the first n–3 bits are 1’s, the set of strings 

denoted as {Sn–3

n
}: 

[1,1,1,...,1,0,?,?] ≡ [u1,u2,u3,...,un–3,vn–2,?,?] 

where the last two bits  

vn–1,vn; vn–1,un; un–1,vn; un–1,un 

are determined based on the Hasse diagram technique, i.e. are the output of 

the 2nPG(n’) method. 
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... 

n. We will continue this process until we arrive at the strings with the first bit 1, 

the set of strings denoted as {S1

n
}; meaning at the strings with two first bits 

[1,0] ≡ [u1,v2] 

while n–2 other bits 

[v3,v4,...,vn–1,vn]; [v3,v4,...,vn–1,un]; [u3,u4,..,un–1,un] 

are determined based on the Hasse diagram technique, i.e. are the output of 

the 2nPG(n’) method. 

In conclusion, through this code we found the general formula by which we can 

find the number of all strings (of length n) with a certain number of first bits 

consecutive 1’s (0’s): 

 |���| = 2�
�
� (1) 

where 
 − 1 determines the length of Hamilton’s path and k the number of con-

secutive 1’s (0’s), where 1 ≤  ≤ 
 − 1.  
Based on this formula, we can find the number of strings in each step, which 

are: 

|���| + |��
�� | + |��
�� | + |��
�� | + ⋯ + |���| + ⋯ + |���| + |���| = 
 

1 + 2�
�
��� + 2�
�
��� + 2�
�
��� + ⋯ + 2�
�
� + ⋯ + 2�
�
� + 2�
�
� 
 

= 1 + 2� + 2� + 2� + ⋯ +2�
�
� + ⋯ + 2�
� + 2�
� 

Now we find the sum of these numbers which is: 

|���| + !|���|
�
�

���

= 1 + 1 ∙
1 − 2�
�

1 − 2
= 1 − 1 + 2�
� = 2�
� 

If we repeat the same procedure for strings that start with a certain number of 

consecutive zeroes we will have the same result, 2�
�. This confirms that in a total 

there are 2� strings with length n. 

Example 4.1. Determine the number of binary strings of length 
 = 6	 where 
the first 3 bits are consecutive 1’s. 

Solution: According to the formula (1), we have to calculate  

|���| = ���
� = 2

�
� = 2� = 4 

111000, 111001, 111011, 111010 

Example 4.2. Determine the number of binary strings of length 
 = 123 where 
the first 17 bits are consecutive 1’s. 



Q.D. Gjonbalaj, V.R. Hamiti 26 

Solution: According to the formula (1), we have to calculate 

|���| = �������� = 2���
�
�� = 2��� 

We can generate the required strings by recursively invoking the 2NPG(n, k) 

method (line 3 to 4). 

Example 4.3. Determine the number of binary strings of length 	n = 6 where 
at least the first 3 bits are consecutive 1’s. 

Solution: According to the formula (1), and the fact that at least the first 3 bits 

are consecutive 1’s, we have to calculate:  

2|���| = 2���
� = 2 ∙ 2� = 8 

111000, 111001, 111011, 111010, 111111, 111110, 111100, 111101. 

Example 4.4. Determine the number of binary strings of length  
 = 6	where 
the first two bits are 0’s while the third and fourth bits are 1’s.  

Solution: We apply the formula (1) for 
 = 5	and  = 2 so we get the number 
of strings that have at least the first two digits of 1’s. Each of the obtained strings is 

added by two 0’s at the beginning of the string.  

2|���| = 2����� = 2 ∙ 2�
�
� = 8. 

To generate the required strings, we can apply the algorithm for the �2
��� 
graph, obtained strings is added by two 0’s at the beginning of the string.  

0011111, 0011110, 0011100, 0011101, 0011000, 0011001, 0011011, 0011010. 

Example 4.5. A bit string of length four is generated at random so that each 

of the 16 bit strings of length four is equally likely. What is the probability that 

it contains at least two consecutive 0’s, given that its first bit is a 0? (We assume 

that 0 bits and 1 bits are equally likely.) 

Solution: Let E be the event that a bit string of length four contains at least two 

consecutive 0s, and let F be the event that the first bit of a bit string of length four 

is a 0. We can generate the elements of events E and F by applying the �2
��� 
graph. Then, the probability that a bit string of length four has at least two consecu-

tive 0 s, given that its first bit is a 0, equals 

���\"� =
��� ∩ "�
��"� =

�

�


�

�


=
5

8
. 

5. Conclusion  

This paper focuses on describing the algorithm of determining the number of 

binary strings which contain, for a given	 , exactly   runs of 1’s (0’s) of length   
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in all possible binary strings of length 
, 1 ≤  ≤ 
, the �2
��� graph algorithm 
has been shown to provide better results to an optimization problem when compared 

to an equivalent problem related to binary trees. 

Detailed knowledge about the distribution of runs in binary strings may be 

useful in many engineering applications, for example, data compression, bus 

encoding techniques, computer arithmetic etc. Prior knowledge about the probabil-

ity of occurrence of runs of 1’s of a given length in a binary string may help us 

in assessing the merit of a typical run-length encoding scheme. Distribution of runs 

in binary strings is closely related to the statistics of success runs in n Bernoulli 

trials #�,#�, … ,#� 
with a success probability $, 0 ≤ $ ≤ 1 and a failure probabil-

ity of % = 1 − $.	 
This paper aims to expand and even further develop the implementation of 

the �2
��� algorithm. This will provide many challenges that remain within our 
ongoing research work. 
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