
Journal of Applied Mathematics and Computational Mechanics 2018, 17(2), 17-27

www.amcm.pcz.pl p-ISSN 2299-9965

 DOI: 10.17512/jamcm.2018.2.02 e-ISSN 2353-0588

GRAPH PRESENTATION OF BINARY STRINGS

Qefsere Doko Gjonbalaj, Valdete Rexhëbeqaj Hamiti

Department of Math, Faculty of Electrical and Computer Engineering
University of Prishtina “Hasan Prishtina”

 Prishtinë, 10 000, Kosovë
qefsere.gjonbalaj@uni-pr.edu, valdete.rexhebeqaj@uni-pr.edu

Received: 31 January 2018; Accepted: 26 April 2018

Abstract. This article is motivated by the problem of finding a graph, which operates on

the principle of the Hasse diagram. In the present article, the Hasse diagram technique

(HDT) was applied to relate binary string sets with graph theory. We investigate this

relation in detail and propose a new graph, the so-called 2n-Parallel Graph �2����, and

an efficient pseudo code that decompresses a given binary string set to its elements.

The goal of this pseudo code is its application in determining the number of strings with

a certain number of first bits consecutive 1’s (0’s). This pseudocode is also responsible

for the solution of several combinatorial problems on a certain binary string. Furthermore,

our results are valid for any string length.

MSC 2010: 05C90, 68R10

Keywords: Hasse diagram, binary strings

1. Introduction

As we know, binary strings can be decoded using a binary tree. To read that

string from any prescribed position forward, one starts at the root and moves down

from the root of the tree to the external node that holds that character: a 0 bit identi-

fies a left branch in the path, and a 1 bit identifies a right branch. This procedure

is continued until the bit string of length n is decoded. But with an increase

in the length of the string, the binary tree becomes more complicated [1].

So we look for another way to represent binary strings that will allow us to

minimize the number of branches in our drawing. Looking to simplify the problem

we have defined a new graph that works by use of the Hasse diagram technique.

2. Basic notions

All graphs considered here are simple, finite, connected and undirected. We

follow the basic notions and terminologies of graph theory as in [1].

Q.D. Gjonbalaj, V.R. Hamiti 18

Definition 2.1. A graph � = �����,����� consists of two sets; ���� =

= �	�,	�, …
 called vertex set of � and ���� = ���, ��, …
 called edge set of �.
More precisely we denote the vertex set of � as �(�) and the edge set of � as
�(�). Elements of �(�) and �(�) are called vertices and edges, respectively.

The number of vertices in �(�) is denoted by |����| and the number of edges
in ���� is denoted by |����|.

Definition 2.2. A walk in which no vertex is repeated is called a simple path.

A path with
 vertices is denoted as ��.
Definition 2.3. A graph � is connected if there is a path between every pair

of vertices of �. A graph, which is not connected, is called a disconnected graph.
Definition 2.4. [2] A graph � with
 ≥ 2

vertices is called a path if � has

exactly two vertices with degree 1 and exactly
 − 2

vertices with degree 2.

Definition 2.5. A simple path in a graph � that passes through every vertex
exactly once is called a Hamilton path, and a simple circuit in a graph � that passes
through every vertex exactly once is called a Hamilton circuit.

Theorem 2.1. [3] Let � be a finite connected graph on n vertices. Then � con-
tains at least
 − 1 edges, with equality if and only if � is a tree.

Here we review some basic definitions and notions concerning posets (partially

ordered set) and the Hasse diagram.

Definition 2.6. [2] A Hasse diagram � is a directed graph representation of
a poset � whose vertices represent elements of � and whose directed edges signify
the " ≤ " relation. That is, an edge 	 → � means 	 ≤ �.

In other words, the Hasse diagram �	of poset � is defined:
(1) ���� = �
(2) ���� = �	 → ��	,� ∈ �,	 ≤ �, ∄� ∈ � ���ℎ	�ℎ��		 ≤ � ≤ ���

and in this case we say that � covers 	, so that the line segment from 	 to � runs
upwards �.

If we assume that all edges are pointed “upward”, we do not have to show

the directions of the edges.

The objects (vertices) in a Hasse diagram that are not covered by other objects

are called “maximal objects.” Objects that do not cover other objects are called

“minimal objects.” In some diagrams there are also isolated objects that can be

considered as maximal and minimal objects at the same time. A chain (string)

is a set of comparable objects; therefore levels can be defined as the longest chain

within the diagram. An antichain is a set of mutually incomparable objects, located

at one and the same level. The height of the diagram is the longest chain, and

the longest antichain is its width [4].

Graph presentation of binary strings 19

3. 2n Parallel Graph (2nPG)

Let Σ be the set �0,1
. Then the set of all finite binary strings of length
 is
written as Σ�

∗ . Σ�
∗ can be ordered by the prefix relation: for �, 	 ∈ Σ�

∗ , � is a prefix
of 	 if either � = 	 or � is a finite initial substring of 	. We write � ≤ 	 if � is
a prefix of 	 and �‖	� if neither � nor 	 is a prefix of the other (some authors
write � ∦). For each set of binary strings of length
 there is |Σ�

∗ | = 2� .
For brevity, we give the following definition.

Definition 3.1. [5] Let � ≡ ��,��, … , �� be an element of Σ�
∗ . Weight of �,

denoted by ����,	is defined as ���� = ∑ ���

��� .

For example, the string 10011 has weight 3.

Now we are going to define an efficient graph (which operates on the principle

of Hasse diagram) for the set of binary strings of length
 whose weight (number
of 1s) are in the range �, � + 1, � + 2, … ,� where 0 ≤ � < � ≤
.	

Definition 3.2. 2
 Parallel Graph �2
���	is a graph consisting of 2
 vertexes
situated in the proportional way in to parallel line. The vertices in first line will be

denoted with �� where � = 1,2, … ,
 and �� = 1 for ∀�, while vertices in second
line with 		� where � = 1,2, … ,
 and 		� = 0 for ∀�. The set of �2
���	edges
in graph will be defined with � = ���� ,����
, �	� ,	���
, ��� ,	���
, �	� ,����
�,
for � = 1,2, … ,
 − 1 and all edges are pointed “upward”, which means it works
by the Hasse diagram technique.

From the definition of graph �2
��� it follows that the set of vertices � are
defined by � = ���,��, … ,�� ,	�,	�, … ,	�
 = �1,1, … ,1,0,0, … ,0
 and |�| = 2
.

The problem of enumeration of all n-bit binary strings is equivalent to finding

a Hamilton path in the �2
��� graph. Because of the Hasse diagram technique,
the Hamilton path in �2
��� graph contains only n vertices (not 2n).

Thinking of binary strings as path in the graph, based on Theorem 1.1,

the strings of length
 are mapped to a path of length
 − 1. So, from this fact we
conclude that:

Theorem 3.1. Let Σ�
∗

be the set of all finite binary strings of length
, where

|Σ�
∗ | = 2� . Then, the graph �2
���, which represents the element of set Σ�

∗

for
 ≥ 2 has 4�
 − 1� edges, which means that |��2
���| = 4�
 − 1�.

Proof: From the definition 3.2, the set of edges of �2
���	graph is the set
� = ���� ,����
, �	� ,	���
, ��� ,	���
, �	� ,����
�, for � = 1,2, … ,
 − 1. Therefore,

from the Theorem 1.1, every subset of set � will have
 − 1 edges and since �
has four such subsets then follows that |��2
���| = 4�
 − 1�.

Following, based on the definition 3.2, we will construct a �2
���	graph and
compare it with binary trees. By representing the set of binary strings with both

graphs: with �2
���	and by binary tree, we can see the advantages and simplicity
of the first graph to the second graph.

Example 3.1. We are going to present the set of binary strings with the �2
���
graphs and with the binary trees, for
 = 2,3,4. Here, for the �2
���	graph we will
use the Hasse diagram technique.

Q.D. Gjonbalaj, V.R. Hamiti 20

For
 = 2 we have (Fig. 1a and 1b):

|�| = 4 = 2 ∙ 2, |�| = 4�� − 1� = 4

Fig. 1a. �2���� graph for binary strings of length � = 2

|�| = 7 = 2��� − 1, |�| = 6 = 2��� − 2

Fig. 1b. Binary tree for binary strings of length � = 2

In this case we get 2� = 2� = 4 binary strings: 11, 10, 01, 00.

For
 = 3 we have (Fig. 2a and 2b):

|�| = 6 = 2 ∙ 3, |�| = 4�� − 1� = 8

Fig. 2a. �2���� graph for binary strings of length � = 3

|�| = 15 = 2��� − 1, |�| = 14 = 2��� − 2

Fig. 2b. Binary tree for binary strings of length � = 3

Graph presentation of binary strings 21

In this case we get 2� = 2� = 8 binary strings: 111, 110, 101, 100, 000, 001,

010, 001.
For
 = 4 we have (Fig. 3a and 3b):

|�| = 8 = 2 ∙ 4, |�| = 4�� − 1� = 12

Fig. 3a. �2����	graph for binary strings of length � = 4

|�| = 31 = 2��� − 1, |�| = 30 = 2��� − 2

Fig. 3b. Binary tree for binary strings of length � = 4

In this case we get 2� = 2� = 16 binary strings: 1111, 1110, 1101, 1100,
1011, 1001, 1010, 1000, 0000, 0001, 0010, 0011, 0100, 0110, 0101, 0111.

We can continue to construct, for each
, a Hamilton path in a �2
��� graph
with the following additional property: edges between levels � − 1 and � of a �2
���
graph must appear on the path before edges between levels � and � + 1.

Corollary 3.1. Let Σ�
∗

be the set of all finite binary strings of length
, where

|Σ�
∗ | = 2� . Then, for
 ≥ 2, the number of edges of a �2
���	graph creates the

arithmetic sequence �4�
 − 1�
 while the number of edges in a binary tree creates
the sequence �(2	�� − 2)
.

Proof: From the example 3.1, we note that the sequence of number of a �2
���
graph is: 4, 8, 12, … ,��
� + 4 or the arithmetic sequence with first element �� = 4

and difference � = 4 (it can be proved with mathematical induction). Also the

number of edges of binary trees creates the sequence: 6, 14, 30, … , 2��� − 2.

22

Fig. 4.

Corollary 3.2. Let

|Σ�
∗ | � 2� . Then, � �

arithmetic sequence �2

the sequence �	2���

Proof: From the example 3.1, we note that the sequence of number of vertices

of a 	2���
 graph is:

element �� � 4 and difference
induction). Also the number of edges of binary trees creates the sequence:

7, 15, 31,… , 2���
 1.
In conclusion, based on

the 	2���
 graph, is much more practical because it has a much smaller number of
vertices and edges compared with the binary tree, in which the number of vertices

and edges is much larger, and it grow

is the fact that it is easier to draw and takes less space.

In following we will describe the pseudo code that produces a

4. Pseudocode of a 2

In this section an eff

graph by decompressing a given binary string set to its elements and how does it

Q.D. Gjonbalaj, V.R. Hamiti

Fig. 4. �2����	graph for binary strings of length �

Let Σ�
∗

be the set of all finite binary strings of length

2, the number of vertices of a 	2���
	graph creates the
�2�� while the number of vertices of binary trees creates

1
�.
From the example 3.1, we note that the sequence of number of vertices

graph is: 4, 6, 8,… , ���� � 2 or the arithmetic sequence with first

and difference � � 2 (it can be proved with mathematical
induction). Also the number of edges of binary trees creates the sequence:

In conclusion, based on two corollaries and our own example we can see that

graph, is much more practical because it has a much smaller number of

vertices and edges compared with the binary tree, in which the number of vertices

and edges is much larger, and it grows very fast. Also, the advantage of this graph

is the fact that it is easier to draw and takes less space.

In following we will describe the pseudo code that produces a 	2���

Pseudocode of a 2n Parallel Graph ������

In this section an efficient pseudocode will be provided that produces a

graph by decompressing a given binary string set to its elements and how does it

be the set of all finite binary strings of length �, where

graph creates the

while the number of vertices of binary trees creates

From the example 3.1, we note that the sequence of number of vertices

or the arithmetic sequence with first

(it can be proved with mathematical

induction). Also the number of edges of binary trees creates the sequence:

two corollaries and our own example we can see that

graph, is much more practical because it has a much smaller number of

vertices and edges compared with the binary tree, in which the number of vertices

s very fast. Also, the advantage of this graph

�
 graph.

icient pseudocode will be provided that produces a 	2���

graph by decompressing a given binary string set to its elements and how does it

Graph presentation of binary strings 23

operates on the principle of Hasse diagram. At the beginning, we give a pseudo-

code and afterwards, we discuss the complexity of our solution.

The problem of enumeration of all n-bit binary strings is equivalent to finding

a Hamilton path with n vertices and
 − 1 edges, in the �2
��� graph, which means
that at the same time we will determine the binary strings and Hamiltonian paths.

In that case, we denote with ��� ∈ Σ�
∗ all binary strings of length
 where

the first bits are consecutive 1’s (0’s).
Our pseudocode for the 2
 Parallel Graph is presented as a method called

2NPG(n) (cf. Fig. 5) which takes as a parameter the length
 for each of the binary
strings that are to be generated.

2NPG(n)

INPUT: n is the length of each of the binary strings to generate.

OUTPUT: S is the set of generated binary strings Sk
n
 such that

• each Sk
n
 is represented with [e1,e2,e3,..,ek–1,ek,ek+1,..,en–1,en], and

• k represents the nr. of first bits consecutive 1’s in the string to generate.

1 let initially S � {} // initially is S an empty set of binary strings

2 for k � n to 1 // for each step below, i.e. distinct nr. of consecutive 1’s

3 do 2nPG(n, k) // where k <= n

4 RETURN {Sk
n
}� {[e1,e2,e3,…,ek–1,ek,{ek+1,...,en–1,en}]}

5 RETURN S � S U{Sk
n
}� {[e1,e2,e3,…,ek–1,ek,ek+1,...,en–1,en]}

Fig. 5. The 2NPG(n) pseudocode

We represent with [e1,e2,e3,.., ek-1,ek,ek+1,..,en-1,en] each of the binary strings Sk

n

of length n to be generated as elements of the final set S of all binary strings gener-

ated at the output. The S set which is initially an empty set (line 1 in the pseudo-

code) is progressively extended (line 5) for each possible k as first consecutive 1

bits (line 2) in the strings to generate by recursively invoking the 2NPG(n, k)

method (line 3 to 4).

2NPG(n, k)

INPUT:

• n is the length of each of the binary strings to generate

• k represents the nr. of first bits consecutive 1’s in the strings to generate.

OUTPUT: S is the set of generated binary strings Sk
n
 such that

• each Sk
n
 is represented with [e1,e2,e3,…,ek–1,ek,ek+1,...,en–1,en].

1 let initially {Sk
n
} � {} // initially is {Sk

n
} an empty set of binary strings

2 for i � 1 to k

3 do ei� ui // assign 1 to ei since u’s are always 1’s

4 if k ≠ n then ek+1� vk+1 // assign 0 to ei+1 since v’s are always 0’s

5 if k < n–1 then for i � k+1 to n

6 do 2nPG(n’) // where n’ = n–k; each S is Sk’
n’
�[ek+1,..,en–1,en]

7 RETURN {Sk’
n’
}� {[ek+1,...,en–1,en]}

8 RETURN {Sk
n
}� {Sk

n
} U {[e1,e2,e3,…,ek–1,ek,{ek+1,...,en–1,en}]}

Fig. 6. The 2NPG(n, k) pseudocode

Q.D. Gjonbalaj, V.R. Hamiti 24

It is obvious that in the very first iteration of the outer for loop in the 2NPG(n)

pseudocode above where =
,	makes the inner for loop in 2NPG(n, k) (lines 3
to 4) generate a string of length n with all 1’s, i.e. the string Sn

n
 :

[1,1,1,..,1,1,1] ≡ [u1,u2,u3,...,un–2,un–1,un]

since lines 5 and 6 to 8 fail due to conditions in line 5 and line 6 evaluating to false.

Next, due to =
 − 1 (refer again to outer for loop in 2NPG(n), this time its
second iteration), the inner for loop in 2NPG(n, k) (lines 3 to 4) will generate a string

with
 − 1 1’s, whereas the last bit
 of the string will be set to 0 (line 5) since the
condition in line 5 evaluates to true, i.e. the following string Sn–1

n
: will be generated

at the output:

[1,1,1,..,1,1,0] ≡ [u1,u2,u3,...,un–2,un–1,vn]

Note that lines 6 to 8 fail due to condition in line 6 evaluating to false.

In every other next iteration of the outer for loop in 2NPG(n) starting from

the 3
rd
 iteration, i.e., for =
 − 2 to = 1, both conditions (lines 5 and 6) in the

inner for loop in 2NPG(n, k) are evaluated to true. As a consequence, another for

loop is initiated (line 6) which recursively uses the Hasse diagram techniques but

for shorter strings of length n’ to generate at the output at each iteration by invok-

ing the 2nPG(n’) method (line 7), resulting into a subset {Sk’

n’
} of such strings

[ek+1,...,en–1,en] per iteration.

As an illustration, two next iterations in the 2NPG(n) pseudocode of the outer

for loop where =
 − 2, =
 − 3, up to its last iteration where = 1 are
explained.

1. We create the binary strings where the first n-2 bits are 1’s, the set of strings

denoted as {Sn–2

n
}:

[1,1,1,...,1,0,?] ≡ [u1,u2,u3,...,un–2,vn–1,vn] and

[1,1,1,...,1,0,?] ≡ [u1,u2,u3,...,un–2,vn–1,un]

where the last bit

un or vn

is determined based on the Hasse diagram technique, i.e. are the output of the

2nPG(n’) method (line 7) within the 2nPG(n, k) pseudocode.

2. We create the binary strings where the first n–3 bits are 1’s, the set of strings

denoted as {Sn–3

n
}:

[1,1,1,...,1,0,?,?] ≡ [u1,u2,u3,...,un–3,vn–2,?,?]

where the last two bits

vn–1,vn; vn–1,un; un–1,vn; un–1,un

are determined based on the Hasse diagram technique, i.e. are the output of

the 2nPG(n’) method.

Graph presentation of binary strings 25

...

n. We will continue this process until we arrive at the strings with the first bit 1,

the set of strings denoted as {S1

n
}; meaning at the strings with two first bits

[1,0] ≡ [u1,v2]

while n–2 other bits

[v3,v4,...,vn–1,vn]; [v3,v4,...,vn–1,un]; [u3,u4,..,un–1,un]

are determined based on the Hasse diagram technique, i.e. are the output of

the 2nPG(n’) method.

In conclusion, through this code we found the general formula by which we can

find the number of all strings (of length n) with a certain number of first bits

consecutive 1’s (0’s):

 |���| = 2�
�
� (1)

where
 − 1 determines the length of Hamilton’s path and k the number of con-

secutive 1’s (0’s), where 1 ≤ ≤
 − 1.
Based on this formula, we can find the number of strings in each step, which

are:

|���| + |��
�� | + |��
�� | + |��
�� | + ⋯ + |���| + ⋯ + |���| + |���| =

1 + 2�
�
��� + 2�
�
��� + 2�
�
��� + ⋯ + 2�
�
� + ⋯ + 2�
�
� + 2�
�
�

= 1 + 2� + 2� + 2� + ⋯ +2�
�
� + ⋯ + 2�
� + 2�
�

Now we find the sum of these numbers which is:

|���| + !|���|
�
�

���

= 1 + 1 ∙
1 − 2�
�

1 − 2
= 1 − 1 + 2�
� = 2�
�

If we repeat the same procedure for strings that start with a certain number of

consecutive zeroes we will have the same result, 2�
�. This confirms that in a total

there are 2� strings with length n.

Example 4.1. Determine the number of binary strings of length
 = 6	 where
the first 3 bits are consecutive 1’s.

Solution: According to the formula (1), we have to calculate

|���| = ���
� = 2

�
� = 2� = 4

111000, 111001, 111011, 111010

Example 4.2. Determine the number of binary strings of length
 = 123 where
the first 17 bits are consecutive 1’s.

Q.D. Gjonbalaj, V.R. Hamiti 26

Solution: According to the formula (1), we have to calculate

|���| = �������� = 2���
�
�� = 2���

We can generate the required strings by recursively invoking the 2NPG(n, k)

method (line 3 to 4).

Example 4.3. Determine the number of binary strings of length 	n = 6 where
at least the first 3 bits are consecutive 1’s.

Solution: According to the formula (1), and the fact that at least the first 3 bits

are consecutive 1’s, we have to calculate:

2|���| = 2���
� = 2 ∙ 2� = 8

111000, 111001, 111011, 111010, 111111, 111110, 111100, 111101.

Example 4.4. Determine the number of binary strings of length
 = 6	where
the first two bits are 0’s while the third and fourth bits are 1’s.

Solution: We apply the formula (1) for
 = 5	and = 2 so we get the number
of strings that have at least the first two digits of 1’s. Each of the obtained strings is

added by two 0’s at the beginning of the string.

2|���| = 2����� = 2 ∙ 2�
�
� = 8.

To generate the required strings, we can apply the algorithm for the �2
���
graph, obtained strings is added by two 0’s at the beginning of the string.

0011111, 0011110, 0011100, 0011101, 0011000, 0011001, 0011011, 0011010.

Example 4.5. A bit string of length four is generated at random so that each

of the 16 bit strings of length four is equally likely. What is the probability that

it contains at least two consecutive 0’s, given that its first bit is a 0? (We assume

that 0 bits and 1 bits are equally likely.)

Solution: Let E be the event that a bit string of length four contains at least two

consecutive 0s, and let F be the event that the first bit of a bit string of length four

is a 0. We can generate the elements of events E and F by applying the �2
���
graph. Then, the probability that a bit string of length four has at least two consecu-

tive 0 s, given that its first bit is a 0, equals

���\"� =
��� ∩ "�
��"� =

�

�

�

�

=
5

8
.

5. Conclusion

This paper focuses on describing the algorithm of determining the number of

binary strings which contain, for a given	 , exactly runs of 1’s (0’s) of length

Graph presentation of binary strings 27

in all possible binary strings of length
, 1 ≤ ≤
, the �2
��� graph algorithm
has been shown to provide better results to an optimization problem when compared

to an equivalent problem related to binary trees.

Detailed knowledge about the distribution of runs in binary strings may be

useful in many engineering applications, for example, data compression, bus

encoding techniques, computer arithmetic etc. Prior knowledge about the probabil-

ity of occurrence of runs of 1’s of a given length in a binary string may help us

in assessing the merit of a typical run-length encoding scheme. Distribution of runs

in binary strings is closely related to the statistics of success runs in n Bernoulli

trials #�,#�, … ,#�
with a success probability $, 0 ≤ $ ≤ 1 and a failure probabil-

ity of % = 1 − $.	
This paper aims to expand and even further develop the implementation of

the �2
��� algorithm. This will provide many challenges that remain within our
ongoing research work.

References

[1] Rosen, K.H. (2003). Discrete Mathematics and Its Applications. New York, NY: Mc Graw Hill.

[2] Underwood, A. (2013). Book Embeddings of Posets. Retrieved from: https://pdfs.semantics
cholar.org/2d58/247171aacd351c2871a8389dd216c55aad18.pdf

[3] Cuypers, H. (2007). Discrete Mathematics. Retrieved from: https://pdfs.semanticscholar.org/

707d/fd6ea8598d3715934916f73b964a979958c4.pdf

[4] Bigus, P., Tsakovski, S., Simeonov, V., Namiesnik, J., & Tobiszewski, M. (2016). Hasse diagram

as a green analytical metrics tool: ranking of methods for benzo[a]pyrene determination in sedi-

ment. Analytical and Bioanalytical Chemistry, 408(14), 3833-3841.

[5] Hartman, G., & Green M. (2004). Binary Strings and Graphs. Retrieved from: http://math.arizo

na.edu/~ura-reports/041/Green.Matthew/Final/bsgf.pdf

