Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper present theoretical and experimental issues related to application of Quantitative Ultrasound (QUS) for assessment of cancellous bone quality and prediction of bone fractures. Commonly used for modeling of ultrasonic wave propagation in cancellous bone, the macroscopic Biot’s theory is discussed in context of its potential applicability for theoretical prediction of wave parameters: phase velocity and attenuation coefficient as functions of frequency. The analysis of the model is focused on the absorption mechanisms responsible for attenuation of ultrasonic waves in cancellous bone, which based on the ultrasonic experiments presumably play a predominant role in the total attenuation. The suitability of the model is discussed and verified by comparison of results of sensitivity analysis of the model with ex vivo experimental ultrasonic data obtained for cancellous bones filled with different fluids.
Wydawca
Czasopismo
Rocznik
Tom
Strony
23--30
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Institute of Mechanics and Computer Science, Kazimierz Wielki University in Bydgoszcz, ul. Chodkiewicza 30, 85-064 Bydgoszcz
Bibliografia
- [1] M.A. Biot, D. Willis, The elastic coefficients of the theory of consolidation, Journal of Applied Mechanics, Vol. 24, 1957
- [2] M.A. Biot, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. Part I. Low- Frequency Range, Part II. Higher Frequency Range, J. Acoust. Soc. Am., Vol. 28, No. 2, 1956
- [3] M.A. Biot, Generalized Theory of Acoustic Propagation in Porous Dissipative Media, J. Acoust. Soc. Am., Vol. 34, No. 9, 1962 [CrossRef]
- [4] P.M. Buechner, R.S. Lakes, Size effects in the elasticity and viscoelasticity of bone, Biomechanics and Modeling in Mechanobiology, Vol. 1, No. 4, 2003
- [5] J.M. Carcione, Wave fields in real media: Wave propagation in anisotropic, anelastic and porous media, Handbook of Geophysical Exploration, 2001
- [6] S. Chaffai, F. Padilla, G. Berger, P. Laugier, In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2 and 2 MHz, J. Acoust. Soc. Am., Vol. 108, No. 3, 2000
- [7] Z.E. Fellah, J.Y. Chapelon, S. Berger, W. Lauriks, C. Depollier, Ultrasonic wave propagation in human cancellous bone: application of Biot theory, J. Acoust. Soc. Am., Vol. 116, No. 1, 2004
- [8] P.M. Gauzellino, F.I. Zyserman, J.E. Santos, A study of ultrasonic wave propagation in bones, Lat. Am. Appl. Res., Vol. 38, No. 4
- [9] C.C. Gluer , A new quality of bone ultrasound research, IEEE Trans Ultrason Ferroelectr Freq Control., Vol. 55, No. 7, 2008
- [10] T.J. Haire, C.M. Langton, Biot theory: a review of its application to ultrasound propagation through cancellous bone, Bone, Vol. 24, No. 4, 1999
- [11] A. Hosokawa, T. Otani, Ultrasonic wave propagation in bovine cancellous bone, J. Acoust. Soc. Am., Vol. 101, No. 1, 1997
- [12] A. Hosokawa, T. Otani, Acoustic anisotropy in bovine cancellous bone, J. Acoust. Soc. Am., Vol. 103, No. 5, 1998
- [13] E.R. Hughes, T.G. Leighton, G.W. Petley, P.R. White, R.C. Chivers, Estimation of critical and viscous frequencies for Biot theory in cancellous bone, Ultrasonics, Vol. 41, No. 5, 2003
- [14] E.R. Hughes, T.G. Leighton, P.R. White, G.W. Petley, Investigation of an anisotropic tortuosity in a Biot model of ultrasonic propagation in cancellous bone, J. Acoust. Soc. Am., Vol. 121, No. 1, 2007 [Web of Science]
- [15] D.L. Johnson, T.J. Plona, H. Kojima, Probing porous media with first and second sound. Part I. Dynamic permeability, Part II. nd. II. Acoustic properties of water-saturated porous meduim, Journal of Applied Physics, Vol. 76, No. 1, 1994
- [16] M. Kaczmarek, J. Kubik, M. Pakula, Wave propagation in saturated high porosity materials, Poromechanics III-Biot Centennial 1905-2005 ed. Y.N. Abousleiman, A.H.-D. Cheng & F.-J. Ulm, 2005
- [17] M. Pakula, F. Padilla, P. Laugier, M. Kaczmarek, Application of Biot’s theory to ultrasonic characterization of human cancellous bones: Determination of structural, material, and mechanical properties, J. Acoust. Soc. Am., Vol. 123, No. 4, 2008 [Web of Science]
- [18] M. Pakula, F. Padilla, P. Laugier, Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz, J. Acoust. Soc. Am., Vol. 126, No. 6, 2009 [Web of Science]
- [19] F. Padilla, P. Laugier, Phase and group velocities of fast and slow compressional waves in trabecular bone, J. Acoust. Soc. Am., Vol. 108, No. 4, 2000
- [20] L. Vastel, C. Masse , P. Mesnil, E. Crozier, F. Padilla, P. Laugier, D. Mitton, J.P. Courpied„ "Comparative ultrasound evaluation of human trabecular bone graft properties after treatment with different sterilization procedures, J Biomed Mater Res B Appl Biomater, Vol. 90, No. 1, 2009 [Web of Science]
- [21] K.A. Wear, Group velocity, phase velocity, and dispersion in human calcaneus in vivo, J. Acoust. Soc. Am., Vol. 121, No. 4, 2007 [Web of Science]
- [22] J.E. White, Seismic Waves, Radiation, Transmission and Attenuation, McGraw-Hill, 1965
- [23] J.L. Williams„ Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot’s theory, J. Acoust. Soc. Am., Vol. 91, No. 2, 1992
- [24] J.L. Williams, M.J. Grimm, F.W. Wehrli, K.R. Foster, H.W. Chung, Prediction of frequency and pore size dependent attenuation of ultrasound in trabecular bone using Biots theory, in Mechanics of Poroelastic Media, ed. Selvadurai A.P.S, Kluwer, Dortrecht, 1996
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4bbfea4-ab3e-43a9-a941-6298786f9b87