Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Badanie warunków cieplno-wilgotnościowych i jakości powietrza w uczelnianej pracowni komputerowej
Języki publikacji
Abstrakty
Educational buildings account for a significant share in the total building stock. Students and teachers spend many hours every day in classrooms. For this reason, it is crucial to ensure appropriate temperature and humidity conditions and air quality in them. This is particularly important in the case of computer laboratories, which have higher heat gains than the average classroom. The paper presents the results of long-term and short-term measurements carried out in the university computer laboratory of air parameters, i.e. temperature, relative humidity and speed, as well as CO2 concentration level and thermal comfort indexes (Predicted Mean Vote and Predicted Percentage of Dissatisfied). The research was supplemented with a survey carried out among occupants of the laboratory. On the basis of the obtained results, it was assessed whether the natural ventilation system was efficient enough to maintain the recommended air parameters.
Budynki edukacyjne stanowią znaczny udział pośród obiektów budowlanych. Uczniowie i nauczyciele spędzają wiele godzin w ciągu dnia w salach lekcyjnych. Z tego powodu kluczowe jest zapewnienie w nich odpowiednich warunków cieplno-wilgotnościowych i jakości powietrza. Jest to szczególnie istotne w przypadku sal komputerowych, które charakteryzują się większymi zyskami ciepła od typowej sali lekcyjnej. W artykule przedstawiono wyniki długo- i krótkoterminowych pomiarów parametrów powietrza przeprowadzonych w uczelnianym laboratorium komputerowym, tj. temperatura, wilgotność względna, szybkość, jak również stężenia CO2 i wskaźników komfortu cieplnego (przewidywana ocena średnia i przewidywany odsetek osób niezadowolonych). Badania eksperymentalne zostały uzupełnione badaniem ankietowym przeprowadzonym wśród użytkowników laboratorium. Na podstawie otrzymanych wyników oceniono, czy system wentylacji naturalnej był wystarczająco wydajny do utrzymania rekomendowanych parametrów powietrza.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
26--32
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab.
Twórcy
autor
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
Bibliografia
- [1] Almost 76 million pupils and students enrolled in the EU. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210427-1 (accessed on: 07.11.2022).
- [2] Tertiary education statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Tertiary_education_statistics (accessed on: 07.11.2022).
- [3] Główny Urząd Statystyczny (2022). Poland in numbers. Warsaw (in Polish).
- [4] Daisey J.M., Angell W.J., Apte M.G. (2003). Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air, 13(1), 53-64, doi: 10.1034/j.1600-0668.2003.00153.x
- [5] van Dijken F., van Bronswijk J.E.M.H., Sundell J. (2006). Indoor environment in Dutch primary schools and health of the pupils. Building Research and Information, 34(5), 437-446.
- [6] Fisk W.J. (2017). The ventilation problem in schools: literature review. Indoor air, 27(6), 1039-1051, doi: 10.1111/ina.12403.
- [7] Singh M.K., Ooka R., Rijal H.B., Kumar S., Kumar A., Mahapatra S. (2019). Progress in thermal comfort studies in classrooms over last 50 years and way forward. Energy and Buildings, 188-189, 149-174, doi: 10.1016/j.enbuild.2019.01.051.
- [8] Zomorodian Z.S., Tahsildoost M., Hafezi M. (2016). Thermal comfort in educational buildings: A review article. Renewable and sustainable energy reviews, 59, 895-906, doi: 10.1016/j.rser.2016.01.033.
- [9] Bluyssen P.M., Zhang D., Kurvers S., Overtoom M., Ortiz-Sanchez M. (2018). Self-reported health and comfort of school children in 54 classrooms of 21 Dutch school buildings. Building and Environment, 138, 106-123, doi: 10.1016/j.buildenv.2018.04.032.
- [10] Bianchi A., Caterina G., Attaianese E. (2003). Cephalalgies and school performance. Risk assessment and prevention strategies. Napoli (in Italian).
- [11] Mendell M.J., Heath G.A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of literature. Indoor Air, 15(1), 27-52, doi: 10.1111/j.1600-0668.2004.00320.x.
- [12] Wargocki P., Porras-Salazar J., Contreras-Espinoza S. (2019). The relationship between classroom temperature and children’s performance in school. Building and Environment, 157, 197-204, doi: 10.1016/j.buildenv.2019.04.046.
- [13] PN-EN ISO 7730:2006 Ergonomics of the thermal environment - analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
- [14] ASHRAE (2013). Standard 55 - Thermal environmental conditions for human occupancy. New York: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
- [15] CEN (2019). EN 16798-1:2019 Energy performance of buildings - Ventilation for buildings - Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics - Module M1-6. Brussels: European Committee for Standardization.
- [16] ISHRAE (2019). Indoor Environmental Quality Standard. ISHRAE Standard 10001:2019. New Delhi: Indian Society of Heating, Refrigerating and Air Conditioning Engineers.
- [17] Education and Skills Funding Agency (2018). Building Bulletin (BB) 101: Guidelines on ventilation, thermal comfort and indoor air quality in schools.
- [18] ISIAQ-CIB Task Group TG 42 (2014). Performance criteria of buildings for health and comfort. CIB No. 292.
- [19] ANSI/ASHRAE (2022). Standard 62.1 - Ventilation and Acceptable Indoor Air Quality.
- [20] The Danish Ministry of Economic and Business Affairs (2010). The Building Regulations (BR10).
- [21] DIN 1946-2 Ventilation and air conditioning. Technical health requirements (VDI ventilation rules).
- [22] Announcement of the Minister of National Education of 4 September 2020 on the publication of the uniform text of the Regulation of the Minister of National Education and Sport on safety and hygiene in public and private schools and institutions (Journal of Laws, Dz.U. 2020 poz. 1604) (in Polish).
- [23] Wargocki P., Wyon D.P. (2013). Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment, 59, 581-589, doi: 10.1016/j.buildenv.2012.10.007.
- [24] PN-83/B-03430 Ventilation in residential buildings of collective residence and public utility buildings - Requirements (in Polish).
- [25] Telejko M. (2017). Attempt to improve indoor air quality in computer laboratories. Modern Building Materials, Structures and Techniques, MBMST 2016. Procedia Engineering 172, 1154-1160, doi:10.1016/j.pro-eng.2017.02.134.
- [26] Telejko M., Stachera A. (2018). Thermal comfort in university computer laboratories. Structure, 201-210. DOI: 10.30540/sae-2018-020.
- [27] Przydrożny E., Zając A. (2014). Ventilation and air-conditioning devices for computer rooms. INSTAL, 10, 32-39 (in Polish).
- [28] Trzeciakiewicz Z. (2015). Analysis of selected ventilation solutions in the school building. INSTAL, 4, 41-46 (in Polish).
- [29] Amanowicz Ł., Ratajczyk K., Szczechowiak E. (2019). Analysis of possibilities of using a ventilation system decentralized in educational buildings. INSTAL, 10, 20-26, doi: 10.36119/15.2019.10.3 (in Polish).
- [30] Sowa J. (2007). Hybrid ventilation - energy efficient way of improving air quality in school buildings. INSTAL, 12, 25-32 (in Polish).
- [31] Ciuman P., Lipska B., Trzeciakiewicz Z., Burda G. (2015). The impact of ventilation air volume rate on thermal comfort conditions in the school indoor swimming pool. INSTAL, 11, 54-60 (in Polish).
- [32] Temperature and humidity recorder AR236.B. Available online: https://www.apar.pl/rejestrator-temperatury-i-wilgotnosci-ar236-b.html (accessed on: 26.10.2022).
- [33] testo 160 IAQ recorder. Available online: https://www.testo.com/pl-PL/testo-160-iaq/p/0572-2014 (accessed on: 26.10.2022).
- [34] Thermal comfort meter SensoData 5500 MK. Available online: http://www.sensor-electronic.pl/pdf/KAT_SensoData5500-MK_PL.pdf (accessed on: 26.10.2022).
- [35] PN-ISO 7726:2001 Ergonomics of the thermal environment - instruments for measuring physical quantities.
Uwagi
1. The paper was financed under the “The Excellence Initiative - Research University” programme.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4b6f049-a054-4d8c-82db-94f7550721de