PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical relationship between ultimate pit limits generated by discounted and undiscounted block value maximization in open pit mining

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultimate pit limit is an important aspect of open pit mining. The optimal ultimate outline determines the tonnage of extractable ore, the volume of waste to be removed, the location of the subsidiary facilities, the location of ore and waste stockpiles, the life time of the mine and the estimated net present value (NPV) of the entire mining operation. Traditionally, there are two major approaches to optimizing the ultimate pit limit. One seeks to determine the ultimate pit using undiscounted profit maximization and the other by determining the optimal mining sequence of all blocks and discounting the value of the blocks. The outline with the highest cumulative NPV will be chosen as the final pit limit. For each of these approaches, different algorithms are presented. The aim of this paper is to present an analytical investigation about the mathematical relationship between sets of blocks of ultimate pits generated by each of these approaches in an ore body. This investigation is in fact the mathematical proof of the theorem that a discounted ultimate pit is smaller than or equal to the undiscounted pit. The results show that the discounted pit is always a subset of the undiscounted pit.
Rocznik
Strony
94--99
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Faculty of Mining Engineering, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
autor
  • Faculty of Mining Engineering, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
  • Faculty of Mining Engineering, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
Bibliografia
  • 1. Askari-Nasab, H., & Awuah-Offei, K. (2009). Open pit optimization using discounted economic block values. Mining Technology, 118(1), 1-12. https://doi.org/10.1179/037178409X12450752943243.
  • 2. Askari-Nasab, H., Pourrahimian, Y., Ben-Awuah, E., & Kalantari, S. (2011). Mixed integer linear programming formulations for open pit production scheduling. Journal of Mining Science, 47(3), 338-359. https://doi.org/10.1134/S1062739147030117.
  • 3. Baek, J., Choi, Y., & Park, H. S. (2016). Uncertainty representation method for open pit optimization results due to variation in mineral prices. Minerals, 6(1), 17. https://doi.org/10.3390/min6010017.
  • 4. Burgarelli, H. R., Souza, F. R., Nader, A. S., Torres, V. F. N., Câmara, T. R., Ortiz, C. E. A., et al. (2018). Direct block scheduling under marketing uncertainties. REMInternational Engineering Journal, 71(2), 275-280. https://doi.org/10.1590/0370- 44672017710128.
  • 5. Caccetta, L., & Hill, S. P. (2003). An application of branch and cut to open pit mine scheduling. Journal of Global Optimization, 27(2-3), 349-365. https://doi.org/10.1023/A:1024835022186.
  • 6. Chatterjee, S., Sethi, M. R., & Asad, M. W. A. (2016). Production phase and ultimate pit limit design under commodity price uncertainty. European Journal of Operational Research, 248(2), 658-667. https://doi.org/10.1016/j.ejor.2015.07.012.
  • 7. Cullenbine, C., Wood, R. K., & Newman, A. (2011). A sliding time window heuristic for open pit mine block sequencing. Optimization Letters, 5(3), 365-377. https://doi.org/ 10.1007/s11590-011-0306-2.
  • 8. David, M., Dowd, P. A., & Korobov, S. (1974). Forecasting departure from planning in open pit design and d grade control. In T. B. Johnson, & D. W. Gentry (Vol. Eds.), Proceedings of the 12th symposium on the application of computers and operations research in the mineral industries (APCOM): Vol. 2, (pp. F131-F142). Boulder, CO, USA: Colorado School of Mines. Dimitrakopoulos, R. (2011). Stochastic optimization for strategic mine planning: A decade of developments. Journal of Mining Science, 47(2), 138-150. https://doi.org/10.1134/S1062739147020018.
  • 9. Dimitrakopoulos, R., Farrelly, C. T., & Godoy, M. (2002). Moving forward from traditional optimization: Grade uncertainty and risk effects in open-pit design. Mining Technology, 111(1), 82-88. https://doi.org/10.1179/mnt.2002.111.1.82.
  • 10. Dimitrakopoulos, R., & Ramazan, S. (2004). Uncertainty based production scheduling in open pit mining. SME Transactions, 316, 106-112. Espinoza, D., Goycoolea, M., Moreno, E., & Newman, A. (2013). MineLib: A library of open pit mining problems. Annals of Operations Research, 206(1), 93-114. https://doi. org/10.1007/s10479-012-1258-3.
  • 11. Gershon, M. E. (1987). Heuristic approaches for mine planning and production scheduling. International Journal of Mining and Geological Engineering, 5(1), 1-13. https://doi.org/10.1007/BF01553529.
  • 12. Gholamnejad, J., & Moosavi, E. (2012). A new mathematical programming model for long-term production scheduling considering geological uncertainty. Journal of the South African Institute of Mining and Metallurgy, 112(2), 77-81.
  • 13. Gilani, S. O., & Sattarvand, J. (2016). Integrating geological uncertainty in long-term open pit mine production planning by ant colony optimization. Computers & Geosciences, 87, 31-40. https://doi.org/10.1016/j.cageo.2015.11.008.
  • 14. Harrison, S., Leuangthong, O., Crawford, B., & Oshust, P. (2009). Uncertainty-based grade modelling of kimberlite: A case study of the jay kimberlite pipe, EKATI diamond mine, Canada. Lithos, 112(supplement 1), 73-82. https://doi.org/10.1016/j.lithos.2009.04.047.
  • 15. Jamshidi, M., & Osanloo, M. (2018). UPL determination of multi-element deposits with grade uncertainty using a new block economic value calculation approach. Journal of Mining and Environment, 9(1), 61-72. https://doi.org/10.22044/jme.2017.5763.1387.
  • 16. Johnson, T. B., & Barnes, R. J. (1988). Application of the maximal flow algorithm to ultimate pit design. In R. R. Levary (Ed.). Engineering design: Better results through operations research methods (pp. 518-531). New York ; Amsterdam: North-Holland.
  • 17. Lambert, W. B., Brickey, A., Newman, A. M., & Eurek, K. (2014). Open-pit block-sequencing formulations: A tutorial. Interfaces, 44(2), 127-142. https://doi.org/10. 1287/inte.2013.0731.
  • 18. Lamghari, A., & Dimitrakopoulos, R. (2016). Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty. European Journal of Operational Research, 250(1), 273-290. https://doi. org/10.1016/j.ejor.2015.08.051.
  • 19. Latorre, E., & Golosinski, T. S. (2011). Definition of economic pit limits taking into consideration time value of money. Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Journal, 2(3), 162-170.
  • 20. Latorre, E., & Golosinski, T. S. (2013). Optimising open pit mine scheduling taking into consideration time value of money and mining restrictions. International Journal of Mining, Reclamation and Environment, 27(3), 156-165. https://doi.org/10.1080/09658416.2012.655166.
  • 21. Lerchs, H., & Grossman, I. F. (1965). Optimum design of open pit mines. CIM Bulletin, 58, 47-54.
  • 22. Moosavi, E., & Gholamnejad, J. (2015). Long-term production scheduling modeling for the open pit mines considering tonnage uncertainty via indicator kriging. Journal of Mining Science, 51(6), 1226-1234. https://doi.org/10.1134/S1062739115060526.
  • 23. Moreno, E., Rezakhah, M., Newman, A., & Ferreira, F. (2017). Linear models for stockpiling in open-pit mine production scheduling problems. European Journal of Operational Research, 260(1), 212-221. https://doi.org/10.1016/j.ejor.2016.12.014.
  • 24. Mousavi, A., Kozan, E., & Liu, S. Q. (2016). Open-pit block sequencing optimization: A mathematical model and solution technique. Engineering Optimization, 48(11), 1932-1950. https://doi.org/10.1080/0305215X.2016.1142080.
  • 25. Osanloo, M., Gholamnejad, J., & Karimi, B. (2008). Long-term open pit mine production planning: A review of models and algorithms. International Journal of Mining, Reclamation and Environment, 22(1), 3-35. https://doi.org/10.1080/17480930601118947.
  • 26. Pana, M. (1965). The simulation approach to open pit design. Proceedings of the 5th symposium on the application of the computers and operations research in the mineral industries (APCOM), Tucson, Arizona USA (pp. 127-135). .
  • 27. Rahimi, E., Moosavi, E., Shirinabadi, R., & Gholinejad, M. (2018). Optimized algorithm in mine production planning, mined material destination, and ultimate pit limit. Journal of Central South University, 25(6), 1475-1488. https://doi.org/10.1007/s11771-018-3841-5.
  • 28. Richmond, A. (2018). Direct net present value open pit optimisation with probabilistic models. In R. Dimitrakopoulos (Ed.). Advances in applied strategic mine planning (pp. 217-228). Cham: Springer. https://doi.org/10.1007/978-3-319-69320-0_15.
  • 29. Roman, R. J. (1974). The role of time value of money in determining an open pit mining sequence and pit limits. Proceedings of 12th APCOM symp (pp. 72-85). Colorado, Golden Co: Colorado School of Mines.
  • 30. Sayadi, A. R., Fathianpour, N., & Mousavi, A. A. (2011). Open pit optimization in 3D using a new artificial neural network. Archives of Mining Sciences, 56(3), 389-403.
  • 31. Tahernejad, M. M., Ataei, M., & Khalokakaie, R. (2018). A practical approach to open-pit mine planning under price uncertainty using information gap decision theory. Journal of Mining and Environment, 9(2), 527-537. https://doi.org/10.22044/jme.2017.6220.1439.
  • 32. Upadhyay, S. P., & Askari-Nasab, H. (2018). Simulation and optimization approach for uncertainty-based short-term planning in open pit mines. International Journal of Mining Science and Technology, 28(2), 153-166. https://doi.org/10.1016/j.ijmst. 2017.12.003.
  • 33. Wang, Q., & Sevim, H. (1992). Enhanced production planning in open pit mining through intelligent dynamic search. 23 APCOM (application of computers and operations research in the mineral industries) symposium proceedings (pp. 461-471). London: Insitute of Mining Metallurgy.
  • 34. Wang, Q., & Sevim, H. (1993). Open pit production planning through pit-generation and pit-sequencing. Transactions of American Society for Mining, Metallurgy and Exploration, 294(7), 1968-1972.
  • 35. Wang, Q., & Sevim, H. (1995). Alternative to parameterization in finding a series of maximum-metal pits for production planning. Mining Engineering Journal, 178-182.
  • 36. Wright, E. A. (1999). Moving cone II - a simple algorithm for optimum pit limits design. Proceedings of the 28th symposium on the application of the computers and operation research in the mineral industries (APCOM) (pp. 367-374). Colorado USA: Colorado School of Mines.
  • 37. Xu, X-ch, Gu, X-w., Wang, Q., Liu, J-p., & Wang, J. (2014). Ultimate pit optimization with ecological cost for open pit metal mines. Transactions of Nonferrous Metals Society of China, 24(5), 1531-1537. https://doi.org/10.1016/S1003-6326(14)63222-2.
  • 38. Yegulalp, T. M., & Arias, J. A. (1992). A fast algorithm to solve the ultimate pit limit problem. Proceedings of the 23rd international symposium on the application of computers and operations research in the mineral industries (pp. 391-397). Littleton, CO, USA, AIME.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4b39077-d930-491e-993b-29e8345996d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.