PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a CPU Heat Sink with Minichannel-Fins & its Thermal Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the design and the thermal analysis of a tribled microprocessor cooler combining the advantages of strong swirl flow and minichannel-fins and CuO nanofluid, have been presented. It is thought that the results will contribute to the understanding of the effects of parameters on the cooling flux of the heat sink and the decline at the microprocessor temperature, as Reynolds number in the minichannels and CuO % volume fraction. The results have exhibited that the total performance of the heat sink cooled with the mixture of water–CuO-EG nanofluids increases with the increase of Re number and the %load of nanoparticles in the coolant. It has been determined that the energy withdrawn from the microprocessor was 241 times higher than the energy generated for maximum CuO load and Re number conditions. Besides, the highest temperature decrease has been measured at the maximum CuO load value and maximum Re number.
Słowa kluczowe
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wz.
Twórcy
  • Atatürk University, Engineering Faculty, Chemical Eng. Department, Offi ce UZ117, TR-25100 Erzurum, TÜRKİYE Ener-KA, Ata Teknokent, TR-25240 Erzurum, TÜRKİYE
Bibliografia
  • 1. Agostini, B., Fabbri, M., Park, J.E., Wojtan, L., Thome, J.R. & Michel, B. (2007). State of The Art of High Heat Flux Cooling Technologies. Heat Transf. Eng. 28(4), 258–281. DOI:10.1080/01457630601117799.
  • 2. Arzutug, M.E. & Basci, A.A. (2021). A New Heat Sink Design for Cooling Microprocessors and Investigation of Cooling Performance, Proceedings, Int. Symposium on Applied Science and Enginnering (Proceedings of ISASE 2021), 7–9 April, 2021 (pp. 120-123) Erzurum, Türkiye.
  • 3. Al-Tae’y, K.A., Ali, E.H. & Jebur, M.N. (2017). Experimental Investigation of Water Cooled Minichannel Heat Sink for Computer Processing Unit Cooling, Int. J. Eng. Res. Appl. 7-8(1), 38–39. DOI: 10.9790/9622-0708013849.
  • 4. Pal, A., Joshi, Y., Beitelmal, M.H., Patel, C.D. & Wenger, T. (2002). Design and Performance Evaluation of a Compact Thermosyphon, IEEE Transactions on Components and Packaking Technologies. 25(4), 601–607. DOI:10.1109/TCAPT.2002.807997.
  • 5. Badruddin, I.A., Al-Rashed, A.A., Salman, A.N.J., Khaleed, H.M.T., Ahmed, N.A., Kamangar, S., Yunus Khan, T.M. (2014). Investigation of Discrete Heating At Upper Section of A Porous Annulus. Aust. J. Basic Appl. Sci. 8(24), 283–289.
  • 6. Yuki,K. & Suzuki, K. (2011). Applicability of Minichannel Cooling Fins to The Next Generation Power Devices as a Single-Phase-Flow Heat Transfer Device. Trans. Japan Inst. Elect. Power Packaking, 4(1), 52–60. DOI: 10.5104/jiepeng.4.52.
  • 7. Dixt, T. & Ghosh, I. (2015). Review of Micro and Mini-Channel Heat Sinks and Heat Exchangers for Single Phase Fluids. Renew. Sust. Energy Rev. 41, 1298–1311. DOI: 10.1016/j. rser.2014.09.024.
  • 8. Lee, H. (2010). Thermal Design: Heat sinks, thermoelectrics, heat pipes, compact heat exchangers and solar cells (2nd ed.). John Wiley & Sons Inc.
  • 9. Kraus, A.D. & Bar-Cohen, A. (1995). Design and analysis of heat sinks. John Wiley & Sons Inc.
  • 10. Carr, J.D. An Examination of CPU Cooling Technologies. Retrieved December 23, 2022, from dsiventures.com/up-contect/uploads/2019/04/CPU-cooling-Technologies.pdf.
  • 11. Gayatri, M. and Sreeramulu, D. (2015). Performance of Water and Diluted Ethylene Glycol as Coolants for Electronic Cooling. Int. J. Eng. Res. Appl. 5, 135–140.
  • 12. Nikhil, S.S. & Kriplani, V.M. (2013). Review of Heat Transfer Enhancement Techniques in Swirl Flow Using Active and Passive Methods. Int. J. Eng. Res. Tech. 6(1), 86–94.
  • 13. Arzutug, M.E. & Yapıcı, S. (2009). Electrochemical Mass Transfer in Impinging Swirl Jets. Ind. Eng. Chem. Res. 48, 1593–1602. DOI: 10.1021/ie0715097.
  • 14. Siddique, H., Hoque, Md. S.B. & Ali, M. (2016), Effect of Swirl Flow On Heat Transfer Characteristics In A Circular Pipe. July, 2016 (pp. 1-7). International Conference on Mechanical Engineering: Proceedings of the 11th International Conference on Mechanical Engineering (ICME 2015), Dhaka, Bangladesh.
  • 15. Biruk, V.V. (1993). Vortex Effect of Energetic Gas Separation in Aviation Technics and Technologies, Izv. Vuzov. Aviac. Tekhn. 1(2), 20–23.
  • 16. Khatalov, A.A. (1989). Theory and experience of swirl flow. Naukova Dumka Press.
  • 17. Kakac, S. & Paramuanjaroenkij, A. (2009). Review of Convective Heat Transfer Enhancement with Fluids. Int. J. Heat and Mass Transf. 52, 3187–3196. DOI: 10.1016/j.ijheatmasstransfer.2009.02.006.
  • 18. Sara, O.N., İçer, F., Yapici, S. & Sahin, B. (2011). Effect of Suspended CuO Nanoparticles on Mass Transfer to a Rotating Disc Electrode. Exp. Therm. Fluid Sci. 35, 558–564. DOI: 10.1016/j.expthermflusci.2010.12.011.
  • 19. Patuleanu, L., Manolache-rusu, I.C., Andronic, F. & Radion, I. (2014). Heat Transfer Through Mini and Micro Circular Channels of CPU’s Cooling Systems. J. Eng. Stud. Res. 20(1), 76–81. DOI: 10.1117/12.823670.
  • 20. Al Shdaifat, M.Y., Zulküfli, R., Sopian, K. & Salih, A.A. (2020). Thermal and Hydraulic Performance of CuO/Water Nanofluids: A Review, Micromachines. 11(416), 1–19. DOI:10.3390/mi11040416.
  • 21. Heris, S.Z., Etemad, S.G. & Esfahany, M.N. (2006). Experimental Investigation of Oxide Nanofluids Laminer Flow Convective Heat Transfer. Int. Commun. Heat Mass Transf. 33, 529–535. DOI: 10.1016/j.icheatmasstransfer.2006.01.005.
  • 22. Caprani, A., Fricquelmont-Laizas, M.M. & Peranneau, P. (1988). Mass Transfer in Laminer Flow at a Rotating Disc Electrode in Suspensions of Inert Particles. J. Electrochem. Soc. 135(3), 635–642.
  • 23. Masuda, H., Ebata, A., Teramae, K. & Hishinuma, N. (1993). Alterlation of Thermal Conductivity and Viscosity Liquid by Dispersing Ultra-fine Particles (Dispersion of g-Al2O3, SiO2 and TiO2 ultra- fine particles). Netsu Bussei. 7, 227–233. DOI: 10.2963/jjtp.7.227.
  • 24. Lee, S., Choi, S.U.S., Li, S. & Eastman, J.A. (1999). Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Trans. ASME, J. Heat Transfer. 121, 280–289. DOI: 10.1115/1.2825978.
  • 25. Wang, X., Xu, X. & Choi, S.U.S. (1999). Thermal Conductivity of Nanoparticle-Fluid Mixture. J. Thermophys. Heat Transfer. 13, 474–480. DOI: 10.2514/2.6486.
  • 26. Afshari, F. & Muratçobanoğu, B. (2023). Thermal analysis of Fe3O4/water nanofuid in spiral and serpentine mini channels by using experimental and theoretical models. Int. J. Environ. Sci. Technol. 20, 2037–2052. DOI: 10.1007/s13762-022-04119-6.
  • 27. Naranjani, B., Roohi, E. & Ebrahimi, A. (2021). Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofuid. J. Therm. Anal. Calorim. 146, 2549–2560. DOI: 10.1007/s10973-020-10225-9.
  • 28. Ebrahimi, A., Rikhtegar, F., Sabaghan, A. & Roohi, E. (2016). Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy. 101, 190–201. DOI: 10.1016/j.energy.2016.01.102.
  • 29. Souida, S., Sahel, D., Ameur, H. & Yousfi, A. (2022). Numerical Simulation of Heat Transfer Behaviors in Conical Pin Fins Heat Sinks. Acta Mechanica Slovaca. 26(3), 32–41. DOI: 10.21496/ams.2023.002.
  • 30. Bencherif, B., Sahel, D., Benzeguir, R. & Ameur, H. (2023). Performance Analysis of Central Processing Unit Heat Sinks Fitted with Perforated Techniques and Splitter Inserts. J. Heat Mass Transf. 145(1), 014501. DOI: 10.1115/1.4055815.
  • 31. Sahel, D., Bellahcene, L., Yousfi, A. & Subasi, A. (2021). Numerical investigation and optimization of a heat sink having hemispherical pin fins. Int. Comm. Heat Mass Transf. 122, 105133. DOI: 10.1016/j.icheatmasstransfer.2021.105133.
  • 32. Çengel, Y.A. (2006). Heat and Mass Transfer- A Practical Approach (3rd ed.). Mc Graw Hill.
  • 33. Ismail, M., Fartaj, A., Karimi, M. (2013). Numerical Investigation on Heat Transfer and Fluid Flow Behaviors of Viscous Fluids in a Minichannel Heat Exchanger, Numerical Heat Transfer, Part A. 64(1), 1–29.
  • 34. Marcelino, E., Riehl, R.R. & Silva, D. de O. (2016). A Review on Thermal Performance of CuO-Water Nanofluids Applied to Heat Pipes and Their Characteristics. In: Proc. of 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm).
  • 35. Beck, M.P. (2008). Thermal conductivity of metal oxide nanofluids. PhD Thesis. Georgia Institute of Technology, Georgia.
  • 36. Engineering Toolbox: Ethylene Glycol Heat-Transfer Fluid Properties. Retrieved December 25, 2022 from https://www.engineeringtoolbox.com/ethylene-glycol-d_146.html
  • 37. Kulkarni, D.P., Namburi, P., Misra, D. & Das, D.K. (2007). Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Gylcol and Water Mixture. Exp. Therm. Fluid Sci. 32(2), 397–402. DOI: 10.1016/j.expthermflusci.2007.05.001.
  • 38. Genceli, O. (2005). Measurement technnique (Dimension, Pressure, Flow and Temperature Measurements). Istanbul, Türkiye. Birsen Publisher.
  • 39. Kline, S.J. & McClintock, F.A. (1953). Describing Uncertainties in Single-Sample Experiments. Mechanical Engineers. 75, 3–8.
  • 40. Mikielewicz, D. & Wajs, J. (2017). Possibilities of Heat Transfer Augmentation in Heat Exchangers with Minichannels for Marine Applications. Pol. Marit. Res. 24, 133–140. DOI: 10.1515/pomr-2017-0031.
  • 41. Miry, S.Z., Rowshani, M., Hanafizadeh, P., Ashjaee, M. & Amini, F. (2016). Heat Transfer and Hydrodynamic Performance Analysis of a Miniature Tangential Heat Sink Using Al2O3-H2O and TiO2-H2O Nanofluids. Exp. Heat Transf., 29, 1–25. DOI: 10.1080/08916152.2015.1046016.
  • 42. Saadoon, Z.H., Ali F.H., Hamzah, H.K., Abed, A.M. & Hatami, M. (2022). Improving the Performance of Mini-Channel Heat Sink by Using Wavy Channel and Different Types of Nanofluids. Sci. Rep., 12, 9402. DOI: 10.1038/s41598-022-13519-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4acc092-3308-4a8e-8d82-d78d36bcbc08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.