Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Analyzing electroencephalographic signals (EEG) could provide valuable information about functional neural activity (FNA) during human motion. The hypothesis of this work is twofold: spatial patterns emerge in EEG signals from functional connectivity (FC) analysis during lower limb movements, and the spatial patterns are mosto robust in some frequency bands than in others. Accordingly, a set of human subjects without neuromotor pathologies participated in an experimental trial where EEG signals were recorded during lower limb movements. The FC was studied with coherence analysis (in δ, θ, and α) and graph theory was proposed to study the characteristics of spatial dynamics by means a set of metrics (degree, maximum connection, and closeness centrality) and two distances (Hamming distance and Jaccard). Finally, a statistical study of the metrics by frequency band was performed to analyze the significant differences between the phases of each stage and movement, considering the proposed metrics. The results of the study indicated that the frequency bands that showed greater statistical significance in the analysis were δ, θ, and α and that the major differences in graph dynamics were shown in degree, maximum connection, and closeness centrality in α band. Present findings portray leading underlying neural networks, implying that discernible spatial patterns exist in FNA during lower limb movements, and such patterns can be characterized with the proposed methodology.
Wydawca
Czasopismo
Rocznik
Tom
Strony
183--196
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
autor
- Departamento de Ciencias Computacionales, Universidad de Guadalajara, Guadalajara, Mexico
autor
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Avenida Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, N.L., CP 66455, Mexico
- Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
- Antiguo Hospital Civil ‘‘Fray Antonio Alcalde’’, Guadalajara, Mexico
autor
- Departamento de Ciencias Computacionales, Universidad de Guadalajara, Guadalajara, Mexico
autor
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA
Bibliografia
- [1] Kaleem S, Swisher CB. Utility of quantitative EEG for seizure detection in adults. J Clin Neurophysiol 2022;39(3):184-94. http://dx.doi.org/10.1097/WNP.0000000000000768.
- [2] Schuele SU. JCN book review: Atlas of intensive care quantitative EEG. LWW; 2022, http://dx.doi.org/10.1097/WNP.0000000000000901.
- [3] Sherly M, Chandra J, Banerjee J, Rangaswamy M. A review of algorithms for mental stress analysis using EEG signal. IOT Smart Syst 2022;561-8.
- [4] Chandar R, Dubey AK. A review and analysis of IoT and machine learning algorithms in the brain disease diagnosis and detection. ECS Trans 2022;107(1):6641. http://dx.doi.org/10.1149/10701.6641ecst.
- [5] Xu X, Lian Z. Objective sleep assessments for healthy people in environmental research: A literature review. Indoor Air 2022;32(5):e13034. http://dx.doi.org/10.1111/ina.13034.
- [6] Tortora GJ, Derrickson BH. Principles of anatomy and physiology. John Wiley & Sons; 2018.
- [7] Noel J-P, Angelaki DE. Cognitive, systems, and computational neurosciences of the self in motion. Annu Rev Psychol 2022;73:103. http://dx.doi.org/10.1146/annurev-psych-021021-103038.
- [8] Bouallegue G, Djemal R, Alshebeili SA, Aldhalaan H. A dynamic filtering DF-RNN deep-learning-based approach for EEG-based neurological disorders diagnosis. IEEE Access 2020;8:206992-7007. http://dx.doi.org/10.1109/ACCESS. 2020.3037995.
- [9] Ahmadlou M, Adeli H. Functional community analysis of brain: A new approach for EEG-based investigation of the brain pathology. Neuroimage 2011;58(2):401-8. http://dx.doi.org/10.1016/j.neuroimage.2011.04.070.
- [10] Campagnini S, Liuzzi P, Mannini A, Riener R, Carrozza MC. Effects of control strategies on gait in robot-assisted post-stroke lower limb rehabilitation: a systematic review. J NeuroEng Rehabil 2022;19(1):1-16. http://dx.doi.org/10. 1186/s12984-022-01031-5.
- [11] Ibrahim HA, Ammar HH, Shalaby R. A review of upper limb robot assisted therapy techniques and virtual reality applications. Int J Artif Intell 2022;11(2):613-23. http://dx.doi.org/10.11591/ijai.v11.i2.pp613-623.
- [12] Qu H, Zeng F, Tang Y, Shi B, Wang Z, Chen X, et al. The clinical effects of brain-computer interface with robot on upper-limb function for post-stroke rehabilitation: a meta-analysis and systematic review. Disabil Rehabil Assist Technol 2022;1-12. http://dx.doi.org/10.1080/17483107.2022.2060354.
- [13] Cui Z, Li Y, Huang S, Wu X, Fu X, Liu F, et al. BCI system with lower-limb robot improves rehabilitation in spinal cord injury patients through short-term training: a pilot study. Cogn Neurodyn 2022;1-19. http://dx.doi.org/10.1007/s11571-022-09801-6.
- [14] Lebedev MA, Nicolelis MAL. Brain-machine interfaces: From basic sciences to neurorehabilitation. Physiol Rev 2017;97:767-837. http://dx.doi.org/10.1016/j.jns.2019.10.010.
- [15] He Y, Eguren D, Azorín JM, Grossman RG, Luu TP, Contreras-Vidal JL. Brain-machine interfaces for controlling lower-limb powered robotic systems. J Neural Eng 2018;15(2):021004. http://dx.doi.org/10.1088/1741-2552/aaa8c0.
- [16] Wang J, Bi L, Fei W, Tian K. EEG-based continuous hand movement decoding using improved center-out paradigm. IEEE Trans Neural Syst Rehabil Eng 2022;30:2845-55. http://dx.doi.org/10.1109/TNSRE.2022.3211276.
- [17] Úbeda A, Azorín JM, Chavarriaga R, R Millán Jd, et al. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques. J Neuroeng Rehabil 2017;14(1):1-14. http://dx.doi.org/10.1186/s12984-017-0219-0.
- [18] Hoshino T, Oguchi K, Inoue K, Hoshino A, Hoshiyama M. Relationship between lower limb function and functional connectivity assessed by EEG among motor-related areas after stroke. Top Stroke Rehabil 2021;28(8):614-23. http://dx.doi. Org/10.1080/10749357.2020.1864986.
- [19] Bastos AM, Schoffelen J-M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci 2016;9:175. http://dx.doi.org/10.3389/fnsys.2015.00175.
- [20] Asadi B, Cuenca-Zaldivar JN, Nakhostin Ansari N, Ibáñez J, Herrero P, Calvo S. Brain analysis with a complex network approach in stroke patients based on electroencephalography: A systematic review and meta-analysis. In: Healthcare, vol. 11, (no. 5):MDPI; 2023, p. 666. http://dx.doi.org/10.3390/healthcare11050666.
- [21] Stam C. Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. Int J Psychophysiol 2010;77(3):186-94. http: //dx.doi.org/10.1016/j.ijpsycho.2010.06.024.
- [22] Cao J, Zhao Y, Shan X, Wei H-l, Guo Y, Chen L, et al. Brain functional and effective connectivity based on electroencephalography recordings: A review. Hum Brain Mapp 2022;43(2):860-79. http://dx.doi.org/10.1002/hbm.25683.
- [23] Chiarion G, Sparacino L, Antonacci Y, Faes L, Mesin L. Connectivity analysis in EEG data: A tutorial review of the state of the art and emerging trends. Bioengineering 2023;10(3):372. http://dx.doi.org/10.3390/bioengineering10030372.
- [24] Xu L, Zhang H, Hui M, Long Z, Jin Z, Liu Y, et al. Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory. Neuroscience 2014;261:184-94. http://dx.doi.org/10.1016/j.neuroscience.2013. 12.005.
- [25] Kim E, Lee WH, Seo HG, Nam HS, Kim YJ, Kang M-G, et al. Deciphering functional connectivity differences between motor imagery and execution of target-oriented grasping. Brain Topogr 2023;1-14. http://dx.doi.org/10.1007/s10548-023-00956-x.
- [26] Yi W, Qiu S, Wang K, Qi H, Zhang L, Zhou P, et al. Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery. PLoS One 2014;9(12):e114853. http://dx.doi.org/10.1371/journal.pone. 0114853.
- [27] Strik M, Eijlers AJ, Dekker I, Broeders TA, Douw L, Killestein J, et al. Sensorimotor network dynamics predict decline in upper and lower limb function in people with multiple sclerosis. Multi Scler J 2023;29(1):81-91. http://dx.doi. Org/10.1177/13524585221125372.
- [28] Bosch TJ, Espinoza AI, Mancini M, Horak FB, Singh A. Functional connectivity in patients with parkinson’s disease and freezing of gait using resting-state EEG and graph theory. Neurorehabil Neural Repair 2022;36(10-11):715-25. http://dx.doi.org/10.1177/1545968322112928.
- [29] Fu Y, Zhou Z, Gong A, Qian Q, Su L, Zhao L. Decoding of motor coordination imagery involving the lower limbs by the EEG-based brain network. Comput Intell Neurosci 2021;2021:1-14. http://dx.doi.org/10.1155/2021/5565824.
- [30] Gu L, Yu Z, Ma T, Wang H, Li Z, Fan H. EEG-based classification of lower limb motor imagery with brain network analysis. Neuroscience 2020;436:93-109. http://dx.doi.org/10.1016/j.neuroscience.2020.04.006.
- [31] Mercado L, Quiroz-Compean G, Azorín JM. Analyzing the performance of segmented trajectory reconstruction of lower limb movements from EEG signals with combinations of electrodes, gaps, and delays. Biomed Signal Process Control 2021;68:102783. http://dx.doi.org/10.1016/j.bspc.2021.102783.
- [32] Jung T-P, Makeig S, Humphries C, Lee T-W, Mckeown MJ, Iragui V, et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000;37(2):163-78. http://dx.doi.org/10.1111/1469-8986.3720163.
- [33] Vigário RN. Extraction of ocular artefacts from EEG using independent component analysis. Electroencephalogr Clin Neurophysiol 1997;103(3):395-404. http://dx.doi.org/10.1016/S0013-4694(97)00042-8.
- [34] Marple Jr SL, Carey WM. Digital spectral analysis with applications. Acoustical Society of America; 1989, http://dx.doi.org/10.1121/1.398548.
- [35] Ushiyama J, Takahashi Y, Ushiba J. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters. J Appl Physiol 2010;109(4):1086-95. http: //dx.doi.org/10.1152/japplphysiol.00869.2009.
- [36] Barthélemy D, Willerslev-Olsen M, Lundell H, Conway BA, Knudsen H, Biering-Sørensen F, et al. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons. J Neurophysiol 2010;104(2):1167-76. http://dx.doi.org/10.1152/jn.00382.2010.
- [37] van Asseldonk EH, Campfens SF, Verwer SJ, van Putten MJ, Stegeman DF. Reliability and agreement of intramuscular coherence in tibialis anterior muscle. PLoS One 2014;9(2):e88428. http://dx.doi.org/10.1371/journal.pone.0088428.
- [38] Petersen TH, Kliim-Due M, Farmer SF, Nielsen JB. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait. J Physiol 2010;588(22):4387-400. http://dx.doi.org/10.1113/jphysiol.2010.195735.
- [39] The empirical rule and Chebyshev’s theorem. 2021, URL https://stats. libretexts.org/Bookshelves/Introductory_Statistics/Introductory_Statistics_(Shafer_ and_Zhang)/02%3A_Descriptive_Statistics/2.05%3A_The_Empirical_Rule_and_ Chebyshev%27s_Theorem. [Online Accessed 28 March 2022].
- [40] Wackerly D, Mendenhall W, Scheaffer RL. Mathematical statistics with applications. Cengage Learning; 2014.
- [41] Junker BH, Schreiber F. Analysis of biological networks, vol. 2, Hoboken, NJ, CT: Wiley-Interscience; 2008, http://dx.doi.org/10.1002/9780470253489.
- [42] Jurman G, Visintainer R, Filosi M, Riccadonna S, Furlanello C. The HIM glocal metric and kernel for network comparison and classification. In: In 2015 IEEE international conference on data science and advanced analytics. 2015, October, p. 1-10. http://dx.doi.org/10.48550/arXiv.1201.2931.
- [43] Real R, M. VJ. The probabilistic basis of Jaccard’s index of similarity. Syst Biol 1996;3(45):380-5.
- [44] Patil I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J Open Source Softw 2021;6(61):3167. http://dx.doi.org/10.21105/joss.03167.
- [45] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;3(52):1059-69. http://dx.doi.org/10.1016/j. Neuroimage.2009.10.003.
- [46] Amiri S, Mehvari-Habibabadi J, Mohammadi-Mobarakeh N, Hashemi-Fesharaki SS, Mirbagheri MM, Elisevich K, et al. Graph theory application with functional connectivity to distinguish left from right temporal lobe epilepsy. Epilepsy Res 2020;(167):106449. http://dx.doi.org/10.1016/j.eplepsyres.2020. 106449.
- [47] Duda JT, Cook PA, Gee JC. Reproducibility of graph metrics of human brain structural networks. Front Neuroinf 2014;46(8). http://dx.doi.org/10.1016/j.neuroimage.2009.05.035.
- [48] Carpels SM, Yamamoto Y, Mizuno-Matsumoto Y. Graph theoretical analysis of interictal EEG data in epilepsy patients during epileptiform discharge and nondischarge. Int J Affect Eng 2021;3(20):131-42. http://dx.doi.org/10.5057/ijae.IJAE-D-20-00026.
- [49] Xia M, Wang J, He Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One 2013;7(8):e68910. http://dx.doi.org/10.1371/ journal.pone.0068910.
- [50] Al-Quraishi MS, Elamvazuthi I, Tang TB, Al-Qurishi M, Adil SH, Ebrahim M. Bimodal data fusion of simultaneous measurements of EEG and fNIRS during lower limb movements. Brain Sci 2021;11(6):713. http://dx.doi.org/10.3390/ brainsci11060713.
- [51] Drucker JH, Sathian K, Crosson B, Krishnamurthy V, McGregor KM, Bozzorg A, et al. Internally guided lower limb movement recruits compensatory cerebellar activity in people with Parkinson’s disease. Front Neurol 2019;10:537. http: //dx.doi.org/10.3389/fneur.2019.00537.
- [52] Schwingenschuh P, Katschnig P, Jehna M, Koegl-Wallner M, Seiler S, Wenzel K, et al. Levodopa changes brain motor network function during ankle movements in Parkinson’s disease. J Neural Transm 2013;120:423-33. http://dx.doi.org/10.1007/s00702-012-0896-6.
- [53] Dum RP, Strick PL. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 1991;11(3):667-89. http://dx.doi.org/10.1523/JNEUROSCI.11-03-00667.1991.
- [54] Kim T-J, Cha KS, Lee S, Yang T-W, Kim KT, Park B-S, et al. Brain regions associated with periodic leg movements during sleep in restless legs syndrome. Sci Rep 2020;10(1):1615. http://dx.doi.org/10.1038/s41598-020-58365-0.
- [55] Nuñez A, Buño W. The theta rhythm of the hippocampus: from neuronal and circuit mechanisms to behavior. Front Cell Neurosci 2021;15:649262. http://dx. doi.org/10.3389/fncel.2021.649262.
- [56] Colgin LL. Mechanisms and functions of theta rhythms. Annu Rev Neurosci 2013;36:295-312. http://dx.doi.org/10.1146/annurev-neuro-062012-170330.
- [57] Tseng P, Iu K-C, Juan C-H. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci Rep 2018;8(1):349. http://dx.doi.org/10.1038/s41598-017-18449-w.
- [58] Pfurtscheller G, Neuper C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett 1994;174(1):93-6. http: //dx.doi.org/10.1016/0304-3940(94)90127-9.
- [59] Suffczynski P, Kalitzin S, Pfurtscheller G, Da Silva FL. Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. Int J Psychophysiol 2001;43(1):25-40. http://dx.doi.org/10. 1016/S0167-8760(01)00177-5.
- [60] Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R. Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev 2007;31(7):1003-16. http://dx.doi.org/10.1016/j.neubiorev.2007.03.005.
- [61] Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 2010;4:186. http://dx.doi. org/10.3389/fnhum.2010.00186.
- [62] Hwang K, Ghuman AS, Manoach DS, Jones SR, Luna B. Cortical neurodynamics of inhibitory control. J Neurosci 2014;34(29):9551-61. http://dx.doi.org/10. 1523/JNEUROSCI.4889-13.2014.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4aabcab-7b5e-44e7-a512-514d29571e26