PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties enhancement of cast Al-8.5Fe-1.3V-1.7Si (FVS0812) alloy by friction stir processing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was conducted to investigate the capability of multi-pass friction stir processing (FSP) on microstructure modification and mechanical properties improvement of FVS0812 alloy. FSP was performed at different rotation speeds (1250, 1600, 2000, and 2500 rpm) and traverse speeds (8, 12, and 25 mm/min) for one, two, and four passes. According to the results, applying single-pass FSP at optimized conditions (i.e. 1600 rpm and 12 mm/min) enhanced the tensile strength, fracture strain, and microhardness of the alloy by about 1020, 1050, and 60%, respectively. This improvement can be mainly attributed to the intense breakage and uniform distribution of θ-Al13Fe4 and α-Al12(Fe,V)3Si intermetallics within the matrix, formation of ultrafine recrystallized grains, and elimination of casting defects. Increasing the number of FSP passes up to four slightly decreased the average size of intermetallic particles, but significantly improved their distribution within the matrix which led to 18 and 200% improvement of tensile strength and fracture strain of one-pass FSPed sample, respectively. The fractography results also revealed that multi-pass FSP has changed the fracture mode of Al-8.5Fe-1.3V-1.7Si alloy from low-energy brittle to a more ductile-dimple fracture.
Rocznik
Strony
35--46
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
autor
  • Department of Materials Science and Metallurgy, Imam Khomeini International University, Qazvin, Iran
  • Department of Materials Science and Metallurgy, Imam Khomeini International University, Qazvin, Iran
  • Department of Materials Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
Bibliografia
  • [1] Kaufman JG. Fire resistance of aluminum and aluminum alloys: measuring the effects of fire exposure & on the properties of aluminum alloys. First printing, Chapter 1. Materials Park: ASM International; 2016.
  • [2] Rakhmonov J, Timelli G, Bonollo F. The effect of transition elements on high-temperature mechanical properties of Al-Si foundry alloys-a review. Adv Eng Mater. 2016;18:1096–105.
  • [3] Stevam R, Neto RML, Camargo PA, Filho FA. Al-Fe-X-Si (X=V or Nb) alloy powders prepared by high energy milling in an attritor mill. J Metastable Nanocryst Mater. 2004;20–21:207–12.
  • [4] Yaneva S, Petrov K, Petrov R, Stoichev N, Avdeev G, Kuziak R. Influence of silicon content on phase development in Al–Fe–V–Si alloys. Mater Sci Eng A. 2009;515(1–2):59–655.
  • [5] Tang Y, Tan D, Li W, Pan Z, Liu L, Hu W. Preparation of Al–Fe–V–Si alloy by spray codeposition with added its over-sprayed powders. J Alloys Compd. 2007;439(1–2):103–8.
  • [6] Zheng L, Liu Y, Sun S, Zhang H. Selective laser melting of Al–8.5Fe–1.3V–1.7Si alloy: investigation on the resultant microstructure and hardness. Chin J Aeronaut. 2015;28(2):564–9.
  • [7] Marshall R. Characterization of novel microstructure in Al-Fe-V-Si and Al-Fe-V-Si-Y alloys processed at intermediate cooling rates, Ph.D. Thesis, Faculty and the boards of Trustees of the Colorado school of mines; 2015.
  • [8] Ozyurda HA. Spray rolling of rapidly-solidified Al-Fe-V-Si alloy, Ph.D. Thesis, Middle East Technical University; 2006.
  • [9] Arhami M, Sarioglu F, Kalkanli A, Hashemipour M. Microstructural characterization of squeeze-cast Al–8Fe–1.4V–8Si. Mater Sci Eng A. 2008;485:218–23.
  • [10] Sahoo KL, Das SK, Murty BS. Formation of novel microstructures in conventionally cast Al–Fe–V–Si alloys. Mater Sci Eng A. 2003;355(1–2):193–200.
  • [11] Sahoo KL, Sivaramakrishnan CS, Chakrabarti AK. Modification of cast structure in Al–8.3Fe–0.8V–0.9Si alloy by magnesium treatment. Mater Sci Technol. 2000;16(2):227–30.
  • [12] Sahoo K, Krishnan CS, Chakrabarti A. Studies on wear characteristics of Al–Fe–V–Si alloys. Wear. 2000;239(2):211–8.
  • [13] Sahoo KL, Pathak BN. Solidification behaviour, microstructure and mechanical properties of high Fe-containing Al–Si–V alloys. J Mater Proc Technol. 2009;209(2):798–804.
  • [14] Liu Y-L, Luo L, Shun M-Z, Zhang L, Zhao Y-H, Wu B-L. Microstructure and mechanical properties of Al–5.5Fe–1.1V–0.6Si alloy solidified under near-rapid cooling and with Ce addi-tion. Rare Met. 2016;37(12):1070–5.
  • [15] Ma ZY. Friction stir processing technology: a review. Metall Mater Trans. 2008;39A:642–58.
  • [16] Fekri Soustani M, Taghiabadi R, Jafarzadegan M, Shahriyari F, Rahmani A. Improving the tribological properties of Al-7Fe-5Ni alloys via friction stir processing. J Tribol. 2019;141(12):1–19.
  • [17] Rao AG, Deshmukh VP, Prabhu N, Kashyap BP. Enhancing the machinability of hypereutectic Al-30Si alloy by friction stir processing. J Manuf Proc. 2016;23:130–4.
  • [18] Moharrami A, Razaghian A, Emamy M, Taghiabadi R. Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20 wt% Mg2Si composite. J Tribol. 2019;141(12):122202.
  • [19] Sun S, Zheng L, Liu Y, Liu J, Zhang H. Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting. J Mater Res. 2015;30(10):1661–9.
  • [20] Rai R, De A, Bhadeshia HKDH, DebRoy T. Review: friction stir welding tools. Sci Technol Weld Join. 2011;16(4):325–42.
  • [21] Zhang YN, Cao X, Larose S, Wanjara P. Review of tools for friction stir welding and processing. Can Metall Q. 2012;51(3):250–61.
  • [22] Taylor RP, McClain ST, Berry JT. Uncertainty analysis of metal-casting porosity measurements using Archimedes’ principle. Int J Cast Metals Res. 1999;11(4):247–57.
  • [23] Zou Q, Zhao M, Yin F, Li Z, Liu Y. Phase equilibria in the Al-rich corner of the Al-Fe-Si-V quaternary system at 620 °C. J Phase Equilib Diffus. 2017;36(3):274–82.
  • [24] Anyalebechi PN. Analysis of the effects of alloying elements on hydrogen solubility in liquid aluminum alloys. Scrip Metall Mater. 1995;33(8):1209–16.
  • [25] Węglowski MS, Sedek P, Hamilton C. Experimental analysis of residual stress in friction stir processed cast AlSi9Mg aluminium alloy. Key Eng Mater. 2016;682:18–23.
  • [26] Shahriyari F, Taghiabadi R, Razaghian A, Mahmoudi M. Effect of friction hardening on the surface mechanical properties and tribological behavior of biocompatible Ti-6Al-4V alloy. J Manuf Proc. 2018;31:776–86.
  • [27] Hyett G, Green M, Parkin IP. X-ray diffraction area mapping of preferred orientation and phase change in TiO2 thin films deposited by chemical vapor deposition. J Am Chem Soc. 2006;128(37):12147–55.
  • [28] Su J-Q, Nelson TW, Sterling CJ. Grain refinement of aluminum alloys by friction stir processing. Philos Mag. 2006;86(1):1–24.
  • [29] Totten GE, Scott MD. Handbook of aluminum: alloy production and materials manufacturing, vol. 2. New York: Marcel Dekker Inc.; 2003.
  • [30] Moharrami A, Razaghian A, Paidar M, Šlapáková M, Ojo OO, Taghiabadi R. Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing. Mater Chem Phys. 2020;250:123066.
  • [31] Su JQ, Nelson TW, Sterling CJ. Development of ultrafine grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al–Mg–Zr. Mater Res. 2003;18:1757–60.
  • [32] Mbuya TO, Odera BO, Ng’ang’a SP. Influence of iron on castability and properties of aluminium silicon alloys: literature review. Int J Cast Metals Res. 2016;16(5):451–65.
  • [33] Armbrüster M, Schlögl R, Grin Y. Intermetallic compounds in heterogeneous catalysis-a quickly developing field. Sci Technol Adv Mater. 2014;15(3):34803.
  • [34] Herlach DM, Simons D, Pichon PY. Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge–Si alloys. Philos Trans R Soc A Math Phys Eng Sci. 2018;376(2113):20170205.
  • [35] Vorren O, Evensen JE, Pedersen TB. Microstructure and mechanical properties of AlSi (Mg) casting alloy. AFS Trans. 1984;92:459–66.
  • [36] Hannard F, Castin S, Maire E, Mokso R, Pardoen T, Simar A. Ductilization of aluminium alloy 6056 by friction stir processing. Acta Mater. 2017;130:121–36.
  • [37] Zhang Z, Chen DL. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mate Sci Eng A. 2008;483–484:148–52.
  • [38] Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: a review. J Mater Proc Technol. 2015;224:117–34.
  • [39] Liu L, Bao R, Yi J, Fang D. Fabrication of CNT/Cu composites with enhanced strength and ductility by SP combined with optimized SPS method. J Alloys Compd. 2018;747:91–9.
  • [40] Shaeri MH, Shaeri M, Salehi MT, Seyyedein SH, Djavanroodi F, Abutalebi MR. Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy. Prog Nat Sci Mater Int. 2015;25:159–68.
  • [41] Huang KT, Lui TS, Chen LH. Effect of dynamically recrystallized grain size on the tensile properties and vibration fracture resistance of friction stirred 5052 alloy. Mater Trans. 2006;47:2405–12.
  • [42] Yuvaraj N, Aravindan S. Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. J Mater Res Technol. 2015;4(4):398–410.
  • [43] Shibayanagi T, Gerlich AP, Kashihara K, North TH. Texture in single-crystal aluminum friction spot welds. Metall Mater Trans A. 2009;40A:920.
  • [44] Taghiabadi R, Aria N. Statistical strength analysis of dissimilar AA2024-T6 and AA6061-T6 friction stir welded joints. J Mater Eng Perform. 2019;28:1822–32.
  • [45] Xiao BL, Fan J, Zhou L, Shi L. Microstructure and mechanical properties of Al-Fe-V-Si alloy and composites. J Ceram Proc Res. 2006;7(2):164–6.
  • [46] Sun S, Zheng L, Peng H, Zhang H. Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting. Mater Sci Eng A. 2016;659:207–14.
  • [47] Liebermann HH. Rapidly solidified alloys: processes, structures, properties, applications. New York: Marcel Dekker Inc.; 1993.
  • [48] Zhang R, Wu B. Effect of TiC particles on microstructure and properties of Al-Fe-V-Si alloy. App Mech Mater. 2014;543–547:3725–8.
  • [49] Prakash U, Raghu T, Gokhale A, Kamat S. Microstructure and mechanical properties of RSP/M Al-Fe-V-Si and Al-Fe-Ce alloys. J Mater Sci. 1999;34:5061–5.
  • [50] Chen ZH, Chen ZG, Yan HG, Chen D, He YQ, Chen G. Novel method for densification of porous spray deposited Al–Fe–V–Si alloy tube performs. Mater Sci Technol. 2009;25(1):111–6.
  • [51] Hariprasad S, Sastry SML, Jerina KL, Lederich RJ. Microstructures and mechanical properties of dispersion-strengthened high-temperature Al-8.5Fe-1.2V-1.7Si alloys produced by atomized melt deposition process. Metall Trans A. 1993;24:865–73.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4aa858e-7ee2-4ed4-895b-c8623ce4db7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.