PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental impact of organic vs. conventional agriculture - a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ rolnictwa ekologicznego i konwencjonalnego na środowisko naturalne - publikacja przeglądowa
Języki publikacji
EN
Abstrakty
EN
Nowadays nearly 40% of Earth’s land is used by agriculture. Large areas of arable land are covered by cash crops monocultures, and most common intensive agricultural practices are highly dependent on water, synthetic mineral fertilizers, chemical pesticides, and increasingly also on the products of genetic engineering. The mentioned means of agricultural production, aiming at maximizing yields while decreasing direct production costs, resulted in the agriculture becoming in a very short time one of the economy branches with highly significant environmental impact. Some alternative agricultural systems have been developed in response to the increasing environmental and social concerns of intensive agriculture. One of such systems, earning growing interest worldwide, is organic farming. The presented paper shows and compares environmental impacts of organic vs. conventional agricultural production methods on the basis of available published research. According to the literature, global benefits of organic production methods include e.g. improvement of soil structure and fertility, reduction of soil degradation and erosion, protection of biodiversity, and increasing independence on external production inputs, in that water and non-renewable energy sources. All these features of organic production are important for protecting natural resources and fit well in the concept of sustainable development. It should be underlined that the mentioned environmental/ecosystem benefits of replacing industrial, intensive agriculture with the organic systems, translate into measurable economic values. However, as it is very difficult to internalize external (i.e. environmental) costs and benefits (e.g. ecosystem services) of agriculture, they are usually not taken into account in global economic evaluation of the systems, thus inhibiting development of organic sector.
PL
Blisko 40% powierzchni lądowej Ziemi zajmują obecnie tereny użytkowane rolniczo. Większość gruntów ornych pokrywają wielkoobszarowe uprawy monokulturowe, a stosowane intensywne praktyki rolnicze zależne są w ogromnym stopniu od syntetycznych nawozów azotowych, środków chemicznej ochrony roślin, i coraz częściej także od technik inżynierii genetycznej. Wymienione środki produkcji, mające służyć maksymalizacji plonów przy równoczesnym ograniczeniu kosztów produkcji, mają swój udział w tym, że intensywne rolnictwo stało się w bardzo krótkim czasie jedną z gałęzi gospodarki o znaczącym negatywnym wpływie na środowisko. W odpowiedzi na negatywne konsekwencje środowiskowe i społeczne intensyfikacji produkcji rolniczej, pojawiły się alternatywne metody gospodarowania, w tym zyskujące dziś na znaczeniu rolnictwo ekologiczne. Niniejszy artykuł stanowi przegląd literatury naukowej podejmującej temat wpływu rolnictwa ekologicznego i konwencjonalnego na środowisko naturalne. Według dostępnej literatury, globalne korzyści wynikające ze stosowania ekologicznych metod produkcji rolnej to m.in. zwiększenie żyzności i poprawa struktury gleb oraz zapobieganie jej degradacji i erozji, ochrona bioróżnorodności, a także uniezależnienie produkcji od nakładów zewnętrznych, w tym przede wszystkim od nieodnawialnych źródeł energii. Wszystkie te cechy produkcji ekologicznej składają się na dbałość o trwałość naturalnych zasobów przyrodniczych i stanowią ważny element koncepcji zrównoważonego rozwoju. Należy podkreślić, że wymienione korzyści środowiskowe/ekosystemowe związane z zastępowaniem przemysłowego intensywnego rolnictwa przez system ekologiczny wiążą się z wymiernymi korzyściami ekonomicznymi produkcji rolniczej. Z uwagi na ich trudną internalizację, są one jednak często pomijane w globalnym rachunku ekonomicznym, co wpływa hamująco na rozwój sektora ekologicznego.
Twórcy
  • Warsaw University of Life Sciences (WULS-SGGW), Department of Functional and Organic Food and Commodities, Faculty of Human Nutrition and Consumer Sciences, Chair of Organic Food, ul. Nowoursynowska 159C, 02-776 Warszawa, Poland
  • Institute of Agricultural and Food Economics, National Research Institute (IERiGŻ-PIB), General Economics Department, ul. Świętokrzyska 20, 00-002 Warszawa, Poland
  • Warsaw University of Life Sciences (WULS-SGGW), Department of Functional and Organic Food and Commodities, Faculty of Human Nutrition and Consumer Sciences, Chair of Organic Food, ul. Nowoursynowska 159C, 02-776 Warszawa, Poland
  • Warsaw University of Life Sciences (WULS-SGGW), Department of Functional and Organic Food and Commodities, Faculty of Human Nutrition and Consumer Sciences, Chair of Organic Food, ul. Nowoursynowska 159C, 02-776 Warszawa, Poland
Bibliografia
  • [1] FAOSTAT (2015): Food and Agriculture Organization of the United Nations FAOSTAT Online Database (accessed August 2015); http://faostat.fao.org/site/377/default.aspx#ancor.
  • [2] Stoate C., Boatman N.D., Borralho R.J., Rio Carvalho C., de Snoo G.R., Eden P. (2001): Ecological impacts of arable intensification in Europe. Journal of Environmental Management, Vol. 63, 337-365.
  • [3] Berry P., Ogilvy S., Gardner S., Integrated farming and biodiversity. English Nature Report A.U. English Nature, Peterborough, Editor 2004.
  • [4] Bengtsson J., Ahnström J., Weibull A. (2005): The effects of organic agriculture on biodiversity and abundance: a metaanalysis. Journal of Applied Ecology, Vol. 42, 261-269.
  • [5] Fuller R.J., Norton L.R., Feber R.E., Johnson P.J., Chamberlain D.E., Joys A.C., Mathews F., Steward R.C., Townsend M.C., Manley W.J., Wolfe M.S., Macdonald D.W., Firbank L.G. (2006): Benefits of organic farming to biodiversity vary among taxa. Biology Letters, Vol. 1, 431434.
  • [6] Oehl F., Sieverding E., Ineichen K., Mader P., Boller T., Wiemken A. (2000): Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Applied and Environmental Microbiology, Vol. 69, 2816-2824.
  • [7] Esjberg P., Petersen S., Effects of reduced pesticide use on flora and fauna in the agricultural fields, in Pesticides research, D.E.P. Agency, Editor 2002, Danish Environmental Protection Agency.
  • [8] Hartmann M., Fliessbach A., Oberholzer H.R., Widmer F. (2006): Ranking the magnitude of crop and farming system effects on soil microbial biomass and genetic structure of bacterial communities. FEMS Microbiology Ecology, Vol. 57, 3, 378-388.
  • [9] Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley A.N., Smith V.H. (1998): Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, Vol. 8, 559-568.
  • [10] Stolze M., Piorr A., Häring A., Dabbert S. (2000): The environmental impacts of organic farming in Europe. Org. Farm. Eur. Econ. Policy, Vol. 6.
  • [11] Rockstrom J., Steffen W., Noone K., Persson A., Chapin F.S., 3rd, Lambin E.F., Lenton T.M., Scheffer M., Folke C., Schellnhuber H.J., Nykvist B., de Wit C.A., Hughes T., van der Leeuw S., Rodhe H., Sorlin S., Snyder P.K., Costanza R., Svedin U., Falkenmark M., Karlberg L., Corell R.W., Fabry V.J., Hansen J., Walker B., Liverman D., Richardson K., Crutzen P., Foley J.A. (2009): A safe operating space for humanity. Nature, Vol. 461, 7263, 472-475.
  • [12] Steffen W., Richardson K., Rockstrom J., Cornell S.E., Fetzer I., Bennett E.M., Biggs R., Carpenter S.R., de Vries W., de Wit C.A., Folke C., Gerten D., Heinke J., Mace G.M., Persson L.M., Ramanathan V., Reyers B., Sorlin S. (2015): Sustainability. Planetary boundaries: guiding human development on a changing planet. Science, Vol. 347, 6223, 15.
  • [13] Bellarby J., Foereid B., Hastings A., Smith P. (2008): Cool Farming: Climate impacts of agriculture and mitigation potential. Greenpeace: Amsterdam.
  • [14] Davidson E.A., David M.B., Galloway J.N., Goodale C.L., Haeuber R., Harrison J.A., Howarth R.W., Jaynes D.B., Lowrance R.R., Nolan B.T., Peel J.L., Pinder R.W., Porter E., Snyder C.S., Townsend A.R., Ward M.H. (2012): Excess Nitrogen in the U.S. Environment: Trends, Risks and Solutions. Issues in Ecology Report No. 15. Ecological Society of America: Washington.
  • [15] IERiGŻ-PIB (2016): Rynek środków produkcji dla rolnictwa. Stan i perspektywy (red. A. Zalewski). IERiGŻ-PIB: Warszawa, Vol. 43.
  • [16] Wood S., Cowie A. (2004): A review of greenhouse gas emission factors for fertiliser production. IEA Bioenergy Task 38.
  • [17] Sutton M.A., Bleeker A., Howard C.M., Bekunda M., Grizzetti B., de Vries W., van Grinsven H.J.M., Abrol Y.P., Adhya T.K., Billen G., Davidson E.A., Datta A., Diaz R., Erisman J.W., Liu X.J., Oenema O., Palm C., Raghuram N., Reis S., Scholz R.W., Sims T., Westhoek H., Zhang F.S. (2013): Our Nutrient World: The challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative.
  • [18] UNEP (2014): UNEP Year book. Emerging Issues in Our Global Environment 2014. UNEP: Nairobi.
  • [19] Concepción E.D., Díaz M., Kleijn D., Báldi A., Batáry P., Clough Y., Gabriel D., Herzog F., Holzschuh A., Knop E., Marshall E.J.P., Tscharntke T., Verhulst J. (2012): Interactive effects of landscape context constrain the effectiveness of local agri-environmental management. Journal of Applied Ecology, Vol. 49, 3, 695-705.
  • [20] Maeder P., Fliessbach A., Dubois D., Gunst L., Fried P., Niggli U. (2002): Soil fertility and biodiversity in organic farming. Science & Culture, Vol. 296, 1694-1697.
  • [21] Porter W.P., Green S.M., Debbink N.l., Carlson I. (1993): Groundwater pesticides: interactive effects of low concentrations of carbamates aldicarb and methomyl and the triazine metribuzin on thyroxine and somatotropin levels in white rats. Journal of Toxicology and Environmental Health, Vol. 40, 1, 15-34.
  • [22] Wattiez C., Links between in utero exposure to pesticides and effects on the human progeny. Does pesticide policy protect health?, in Congenital Diseases and the Environment, P. Nicolopoulou-Stamati, L. Hens, and C.V. Howard, Editors. 2007, Springer Netherlands: Houten. p. 183-206.
  • [23] Lu C., Toepel K., Irish R., Fenske R.A., Barr D.B., Bravo R. (2006): Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ Health Perspect, Vol. 114, 2.
  • [24] Curl C.L., Fenske R.A., Elgethun K. (2003): Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environmental Health Perspectives, Vol. 111, 3, 377-382.
  • [25] Chrispeels M.J., Sadava D.E., Strategies for pest control, in Plants, Genes, and Agriculture1994, Jones and Bartlett: Boston M.A. p. 355-383.
  • [26] Popp J. (2011): Cost-benefit analysis of crop protection measures. Journal of Consumer Protection and Food Safety, Vol. 6, S1, 105-112.
  • [27] Choudri B.S., Baawain M. (2015): Effects of Pollution on Freshwater Organisms. Water Environment Research, Vol. 87, 10, 1679-1717.
  • [28] Damalas C.A., Eleftherohorinos I.G. (2011): Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, Vol. 8, 5, 1402-1419.
  • [29] Maqbool F., Mostafalou S., Bahadar H., Abdollahi M. (2016): Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci, Vol. 145, 265-273.
  • [30] Hernandez A.F., Menendez P. (2016): Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms. International Journal of Molecular Sciences, Vol. 17, 4.
  • [31] Sanchez-Santed F., Colomina M.T., Herrero Hernandez E. (2016): Organophosphate pesticide exposure and neurodegeneration. Cortex, Vol. 74, 417-426.
  • [32] Sengupta P., Banerjee R. (2014): Environmental toxins: alarming impacts of pesticides on male fertility. Human & Experimental Toxicology, Vol. 33, 10, 1017-1039.
  • [33] Dhouib I., Jallouli M., Annabi A., Marzouki S., Gharbi N., Elfazaa S., Lasram M.M. (2016): From immunotoxicity to carcinogenicity: the effects of carbamate pesticides on the immune system. Environmental Science and Pollution Research International, Vol. 18, 18.
  • [34] Corsini E., Sokooti M., Galli C.L., Moretto A., Colosio C. (2013): Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence. Toxicology, Vol. 307, 123-35.
  • [35] Pimentel D. (2005): Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, Vol. 7, 229252.
  • [36] Leach A.W., Mumford J.D. (2008): Pesticide Environmental Accounting: A method for assessing the external costs of individual pesticide applications. Environmental Pollution, Vol. 151, 139-147.
  • [37] Bourguet D., Guillemaud T. (2016): The Hidden and External Costs of Pesticide Use. Sustainable Agriculture Reviews (ed. E. Lichtfouse), Springer: Switzerland, Vol. 19, 35-120.
  • [38] Mesnage R., Defarge N., Spiroux de Vendomois J., Seralini G.E. (2014): Major pesticides are more toxic to human cells than their declared active principles. BioMed Research International, Vol. 179691, 10, 26.
  • [39] Séralini G.-E., Clair E., Mesnage R., Gress S., Defarge N., Malatesta M., Hennequin D., de Vendômois J.S. (2014): Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Environmental Sciences Europe, Vol. 26, 1, 1-17.
  • [40] Mesnage R., Defarge N., Spiroux de Vendomois J., Seralini G.E. (2015): Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food and Chemical Toxicology, Vol. 84, 133-153.
  • [41] Ozturk L., Yazici A., Eker S., Gokmen O., Romheld V., Cakmak I. (2008): Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol., Vol. 177, 4, 899-906.
  • [42] Biavati B., Santini C., Alternative therapies to reduce enteric bacterial infections and improve the microbiological safety of pig and poultry production systems, in Handbook of organic food quality and safety, J. Cooper, U. Niggli, and C. Leifert, Editors. 2007, Woodhead Publishing Ltd.: London.
  • [43] Klocke P., Walkenhorst M., Butler G., Reducing antibiotic use in organic dairy production systems, in Handbook of organic food quality and safety, J. Cooper, U. Niggli, and C. Leifert, Editors. 2007, Woodhead Publishing Ltd.: London.
  • [44] Sundrum A., Effect of organic husbandry and feeding regimes on pork quality, in Handbook of organic food quality and safety, J. Cooper, U. Niggli, and C. Leifert, Editors. 2007, Woodhead Publishing Ltd.: London.
  • [45] FAO (2011): Global food losses and food waste - Extent, causes and prevention. Rome.
  • [46] Pimentel D., Harvey C., Resosudarmo P., Sinclair K., Kurz D., McNair M., Crist S., Shpritz L., Fitton L., Saffouri R., Blair R. (1995): Environmental and economic costs of soil erosion and conservation benefits. Science, Vol. 267, 5201, 1117-1123.
  • [47] Pretty J.N., Ball A.S., Xiaoyun L.I., Ravindranath N.H. (2002): The role of sustainable agriculture and renewableresource management in reducing greenhouse-gas emissions and increasing sinks in China and India. Philosophical Transactions of the Royal Society A, Vol. 360, 1741-1761.
  • [48] Aneja V.P., Schlesinger W.H., Erisman J.W. (2009): Effects of agriculture upon the air quality and climate: research, policy, and regulations. Environmental Science & Technology, Vol. 43, 12, 4234-4240.
  • [49] Godfray H.C., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S.M., Toulmin C. (2010): Food security: the challenge of feeding 9 billion people. Science, Vol. 327, 5967, 812-818.
  • [50] Amundson R., Berhe A.A., Hopmans J.W., Olson C., Sztein A.E., Sparks D.L. (2015): Soil science. Soil and human security in the 21st century. Science, Vol. 348, 6235, 7.
  • [51] Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91.
  • [52] Council Regulation (EEC) No 2092/91 of 24 June 1991 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs (OJ L 198, 22.7.1991, p. 1).
  • [53] Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control.
  • [54] FIBL, IFOAM (2016): The World of Organic Agriculture. Statistics & emerging trends. Vol.
  • [55] Reganold J.P., Wachter J.M. (2016): Organic agriculture in the twenty-first century. Nature Plants, Vol. 2, 1-8.
  • [56] Tirado R. (2015): Ecological farming. The seven principles of a food system that has people at its heart. Greenpeace report.
  • [57] Gattinger A., Muller A., Haeni M., Skinner C., Fliessbach A., Buchmann N., Mader P., Stolze M., Smith P., Scialabba Nel H., Niggli U. (2012): Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences USA, Vol. 109, 44, 18226-18231.
  • [58] El-Hage Scialabba N., Hattam C.E. (2002): Organic agriculture, environment and food security. Environment and Natural Resources Series No. 4, FAO, Rome, 258 pp.
  • [59] Kaspercyk N., Knickel K. (2006): A Global Perspective. Organic Agriculture: A Global Perspective (CSIRO), Vol. 259-294.
  • [60] Tuomisto H.L., Hodge I.D., Riordan P., Macdonald D.W. (2012): Does organic farming reduce environmental impacts? a meta-analysis of European research. Journal of Environmental Management, Vol. 112, 309-320.
  • [61] Mondelaers K., Aertsens J., Van Huylenbroeck G. (2009): A meta-analysis of the differences in environmental impacts between organic and conventional farming. British Food Journal, Vol. 111, 10, 1098-1119.
  • [62] Gomiero T., Pimentel D., Paoletti M.G. (2011): Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical Reviews in Plant Sciences, Vol. 30, 1-2, 95-124.
  • [63] Lynch D.H., Halberg N., Bhatta G.D. (2012): Environmental impact of organic agriculture in temperate regions. CAB Review, Vol. 7, 10.
  • [64] Tuck S.L., Winqvist C., Mota F., Ahnström J., Turnbull L.A., Bengtsson J. (2014): Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. Journal of Applied Ecology, Vol. 51, 3, 746-755.
  • [65] Kennedy C.M., Lonsdorf E., Neel M.C., Williams N.M., Ricketts T.H., Winfree R., Bommarco R., Brittain C., Burley A.L., Cariveau D., Carvalheiro L.G., Chacoff N.P., Cunningham S.A., Danforth B.N., Dudenhöffer J.-H., Elle E., Gaines H.R., Garibaldi L.A., Gratton C., Holzschuh A., Isaacs R., Javorek S.K., Jha S., Klein A.M., Krewenka K., Mandelik Y., Mayfield M.M., Morandin L., Neame L.A., Otieno M., Park M., Potts S.G., Rundlöf M., Saez A., SteffanDewenter I., Taki H., Viana B.F., Westphal C., Wilson J.K., Greenleaf S.S., Kremen C. (2013): A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, Vol. 16, 5, 1461-0248.
  • [66] Lotter D.W. (2003): Organic Agriculture. Journal of Sustainable Agriculture, Vol. 21, 4, 59-128.
  • [67] Crowder D.W., Northfield T.D., Strand M.R., Snyder W.E. (2010): Organic agriculture promotes evenness and natural pest control. Nature, Vol. 466, 7302, 109-112.
  • [68] Geiger F., Bengtsson J., Berendse F., Weisser W.W., Emmerson M., Morales M.B., Ceryngier P., Liira J., Tscharntke T., Winqvist C., Eggers S., Bommarco R., Pärt T., Bretagnolle V., Plantegenest M., Clement L.W., Dennis C., Palmer C., Oñate J.J., Guerrero I., Hawro V., Aavik T., Thies C., Flohre A., Hänke S., Fischer C., Goedhart P.W., Inchausti P. (2010): Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, Vol. 11, 2, 97-105.
  • [69] Skinner C., Gattinger A., Muller A., Mäder P., Flieβbach A., Stolze M., Ruser R., Niggli U. (2014): Greenhouse gas fluxes from agricultural soils under organic and non-organic management - A global meta-analysis. Science of The Total Environment, Vol. 468-469, 553-563.
  • [70] Lee K.S., Choe Y.C., Park S.H. (2015): Measuring the environmental effects of organic farming: A meta-analysis of structural variables in empirical research. Journal of Environmental Management, Vol. 162, 263-274.
  • [71] Pretty J.N., Ball A.S., Lang T., Morison J.I.L. (2005): Farm costs and food miles: An assessment of the full cost of the UK weekly food basket. Food Policy, Vol. 30, 1, 1-19.
  • [72] Kremen C., Miles A. (2012): Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecology and Society, Vol. 17, 40.
  • [73] Andersson G.K., Rundlof M., Smith H.G. (2012): Organic farming improves pollination success in strawberries. PLoS One, Vol. 7, 2, 15.
  • [74] Sandhu H.S., Wratten S.D., Cullen R. (2010): The role of supporting ecosystem services in conventional and organic arable farmland. Ecological Complexity, Vol. 7, 3, 302-310.
  • [75] Jones A.D., Fink Shapiro L., Wilson M.L. (2015): Assessing the Potential and Limitations of Leveraging Food Sovereignty to Improve Human Health. Frontiers in Public Health, Vol. 3, 263, 1-10.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4aa26f2-86b6-4de4-a97b-c7633a2d61ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.