PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Organic geochemistry of Upper Carboniferous bituminous coals and clastic sediments from the Lublin Coal Basin (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bituminous coals and clastic rocks from the Lublin Formation (Pennsylvanian, Westphalian B) were subjected to detailed biomarker and Rock-Eval analyses. The investigation of aliphatic and aromatic fractions and Rock-Eval Tmax suggests that the Carboniferous deposits attained relatively low levels of thermal maturity, at the end of the microbial processes/initial phase of the oil window. Somewhat higher values of maturity in the clastic sediments were caused by postdiagenetic biodegradation of organic matter. The dominance of the odd carbon-numbered n-alkanes in the range n-C25 to n-C31 , high concentrations of moretanes and a predominance of C28 and C29 steranes are indicative of a terrigenous origin of the organic matter in the study material. This is supported by the presence of eudesmane, bisabolane, dihydro-ar-curcumene and cadalene, found mainly in the coal samples. In addition, tri- and tetracyclic diterpanes, e. g. 16β(H)-kaurane, 16β(H)-phyllocladane, 16α(H)-kaurane and norisopimarane, were identified, suggesting an admixture of conifer ancestors among the deposited higher plants. Parameters Pr/n-C17and Rdit in the coal samples show deposition of organic matter from peat swamp environments, with the water levels varying from high (water-logged swamp) to very low (ephemeral swamp). Clastic deposits were accumulated in a flood plain environment with local small ponds/lakes. In pond/lake sediments, apart from the dominant terrigenous organic matter, research also revealed a certain quantity of algal matter, indicated, i.a., by the presence of tricyclic triterpanes C28 and C29 and elevated concentrations of steranes. The Paq parameter can prove to be a useful tool in the identification of organic matter, but the processes of organic matter biodegradation observed in clastic rocks most likely influence the value of the parameter, at the same time lowering the interpretation potential of these compounds. The value of Pr/Ph varies from 0.93 to 5.24 and from 3.49 to 22.57 in the clastic sediments and coals respectively. The microbial degradation of organic matter in both type of rocks and during early stages of diagenesis is confirmed by a high concentration of hopanes, the presence of drimane homologues, bicyclic alkanes and benzohopanes. Moreover, bacteria could also have been connected with the primary input of organic matter, which is shown by the presence of e.g. C30 neohop-13(18)-ene.
Rocznik
Strony
425--442
Opis fizyczny
Bibliogr. 86 poz., il.
Twórcy
autor
  • Laboratory for Water, Soil and Rock Chemistry of the Faculty of Geology, University of Warsaw, Zwirki i Wigury 93, PL 02-089 Warszawa, Poland
autor
  • Faculty of Civil and Sanitary Engineering, Lublin University of Technology, Nadbystrzycka 40, PL 20-618 Lublin, Poland
autor
  • Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Zwirki i Wigury 93, PL 02-089 Warszawa, Poland
Bibliografia
  • 1. Van Aassen, B.G.K., Hessels, J.K.C., Abbink, O.A. and De Leeuw, J.W. 1992. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from resinous polymeric cadinene in crude oil from southeast Asia. Geochimica et Cosmochimica Acta, 56, 1231−1246.
  • 2. Alexander, R., Kagi, R.I., Volkman, J.K. and Woodhouse, G.W. 1983. The geochemistry of some biodegraded Australian oils. Australian Petroleum Exploration Journal, 23, 53−63.
  • 3. Alexander, R., Kagi, R.I., Singh, R.K. and Sosrowidjojo, I.B. 1994. The effect of maturity on the relative abundances of cadalane and isocadalane in sediments from the Gippsland Basin, Australia. Organic Geochemistry, 21, 115−120.
  • 4. Allen, J.E., Forney, F.W. and Markovetz, A.J. 1971. Microbial subterminal oxidation of alkanes and alk-1-enes. Lipids, 6, 448−452.
  • 5. Azavedo, D.A., Aquino Neto, F.R., Simoneit, B.R.T. and Pinto, A.C., 1992. Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite. Organic Geochemistry, 18, 9−16.
  • 6. Bakhtiari, A.R., Zakaria, M.P., Yaziz, M.I., Lajis, M.N.H., Bi, X. and Rahim, M.C.A. 2009. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediments cores of Chini Lake, Malaysia: Perylene as indicator of land plant-derived hydrocarbons. Applied Geochemistry, 24, 1777−1787.
  • 7. Bieńko, W. 2004. Lubelski Węgiel “Bogdanka” S.A. − process engineering of the coal preparation plant. Inżynieria Mineralna, July−December, 45−49.
  • 8. Blumer, M., Guillard, R.R.L. and Chase, T. 1971. Hydrocarbons of marine phytoplankton. Marine Biology, 8, 183−189.
  • 9. Bray, E.E. and Evans, E.D. 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2−15.
  • 10. Brown, T.C and Kenig, F. 2004. Water column structure during deposition of Middle Devonian-Lower Mississippian black and green/gear shales of the Illinois and Michigan Basins: a biomarker approach. Palaeogeography, Palaoclimatology, Palaoecology, 215, 59−85.
  • 11. Cebulak, S. 1988. Geological outline of sub-carboniferous basement. In: Z. Dembowski and J. Porzycki (Eds), Carboniferous of the Lublin Coal Basin. Prace Państwowego Instytutu Geologicznego, 122, 31−34. [In Polish with English summary]
  • 12. Chakhmakhchev, A. and Suzuki, N. 1995. Aromatic sulfur compounds as maturity indicators for petroleums from the Buzuluk depression, Russia. Organic Geochemistry, 23, 617−625.
  • 13. Chakhmakhchev, A., Suzuki, M. and Takayama, K. 1997. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments. Organic Geochemistry, 26, 483−490.
  • 14. Dembowski, Z. and Porzycki, J. (Eds) 1988. Carboniferous of the Lublin Coal Basin. Prace Państwowego Instytutu Geologicznego, 122, 1−250. [In Polish with English summary]
  • 15. Didyk, B.M., Simoneit, B.R.T., Brassel, S.C. and Eglinton, G. 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, 216−222.
  • 16. Elias, V.O., De Barros, A.M.A., De Barros, A.B., Simoneit, B.R.T. and Cardoso, J.N. 1997. Sesquiterpenoids in sediments of hypersaline lagoon: A possible algal origin. Organic Geochemistry, 26, 721−730.
  • 17. Ellis, L., Singh, R.K., Alexander, R. and Kagi, R.I. 1995. Identification and occurrence of dihydro-ar-surcumene in crude oils and sediments. Organic Geochemistry, 23, 197−203.
  • 18. Ellis, L., Singh, R.K., Alexander, R. and Kagi, R. 1996. Formation of isohexyl alkylaromatic hydrocarbons from aromatization-rearrangement of terpenoids in the sedimentary environment: A new class of biomarker. Geochimica et Cosmochimica Acta, 60, 4747−4763.
  • 19. Fabiańska, M., Bzowska, G., Matuszewska, A., Racka, M. and Skręt, U. 2003. Gas Chromatography-Mass Spectrometry in geochemical investigation of organic matter of the Grodziec Beds (Upper Carboniferous), Upper Silesian Coal Basin, Poland. Chemie der Erde (Geochemistry), 63, 63−91.
  • 20. Farrimond, P., Taylor, A. and Telnes, N. 1998. Biomarker maturity parameters: the role of generation and thermal degradation. Organic Geochemistry, 29, 1181−1197.
  • 21. Ficken, K.J., Li, B., Swain, D.L. and Eglinton, G. 2000. An nalkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31, 745−749.
  • 22. Fleck, S., Michels, R., Izart, A., Elie, M. and Landais, P. 2001. Palaeoenvironmental assessment of Westphalian fluvio-lacustrine deposits of Lorraine (France) using a combination of organic geochemistry and sedimentology. International Journal of Coal Geology, 48, 65−88.
  • 23. Gelpi, E., Schneider, H., Mann, J. and Oró, J. 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9, 603−612.
  • 24. Gola, M.R., Karger, M. and Gazda, L. 2011. Biomarker`s distribution and thermal maturity of organic matter from tonstein and bituminous coal from coal seam no. 385/2, from “Bogdanka” mine (Lublin Coal Basin). Przegląd Geologiczny, 59, 777−784. [In Polish]
  • 25. Gradziński, R., Doktor, M. and Kędzior, A. 2005. Depositional environments of the coal-bearing Cracow Sandstone Series (upper Westphalian), Upper Silesia, Poland. Przegląd Geologiczny, 53, 734−741. [In Polish]
  • 26. Grice, K., Audino, M., Boreham, C.J., Alexander, R. and Kagi, R.I. 2001. Distribution and stable carbon isotopic compositions of biomarkers in torbanites from different paleogeographical locations. Organic Geochemistry, 32, 1195−1210.
  • 27. ten Haven, H.L., De Leeuw, J.W., Rullkötter, J. and Sinninghe Damstè, J.S. 1987. Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator. Nature, 330, 641−643.
  • 28. ten Haven, H.L., Rohmer, M., Rullkötter, J. and Bisseret, P. 1989. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochimica et Cosmochimica Acta, 53, 3073−3079.
  • 29. Helcel-Weil, M., Dzięgielowski, J., Florek, R., Maksym, A. and Słyś, M. 2007. The Lublin Basin: Petroleum exploration results and their importance for future prospects. Biuletyn Państwowego Instytutu Geologicznego, 422, 51−62. [In Polish with English summary]
  • 30. Holba, A.G., Zumberge, J., Huizinga, B.J., Rosenstein, H. and Dzou, L.I. 2003. Extended tricyclic terpane as indicators of marine uwelling. IMOG 2003, OXX/1, pp. 1−213.
  • 31. Hornschuh, M., Grotha, R. and Kutschera, U. 2006. Moss-associated mathylobacteria as photosymbionts: an experimental study. Naturwissenschaften, 93, 480−486.
  • 32. Huang, W.-Y. and Meinschein, W.G. 1976. Sterols as source indicators of organic materials in sediments. Geochimica et Cosmochimica Acta, 40, 323−330.
  • 33. Hunt, J.M. 1996. Petroleum geochemistry and geology, pp. 1−743. [2nd Edition] W.H. Freeman Company; New York.
  • 34. Hussler, G., Connan, J. and Albrecht, P. 1984. Novel families of tetra- and hexacyclic aromatic hopanoids predominant in carbonate rocks and crude oils. Organic Geochemistry, 6, 39−49.
  • 35. Izart, A., Sachsenhofer, R.F., Privalov, V.A., Elie, M., Panova, E.A., Anstiferov, V.A., Alsaab, D., Rainer, T., Sotirov, A., Zdravkov, A. and Zhykalyak, M.V. 2006. Stratigraphic distribution of macerals and biomarkers in the Donets Basin: Implications for paleoecology, paleoclimatology and eustacy. International Journal of Coal Geology, 66, 69−107.
  • 36. Jasper, K., Kross, B.M., Flajs, G., Hartkopf-Fröder, C., Littke, R. 2009. Characteristic of type III kerogen in coal-bearing strata from the Pennsylvanian (Upper Carboniferous) in the Ruhr Basin, Western Germany: Comparison of coals, dispersed organic matter, kerogen concentrates and coal-mineral mixtures. International Journal of Coal Geology, 80, 1−19.
  • 37. Jiang, C., Alexander, R., Kagi, R.I. and Murray, A. 1998. Policyclic aromatic hydrocarbons and their relationships to palaeoclimate. Organic Geochemistry, 29, 1721−1735.
  • 38. Jiang, C., Alexander, R., Kagi, R.I. and Murray, A.P. 2000. Origin of perylene in ancient sediments and its geological significance. Organic Geochemistry, 31, 1545−1559.
  • 39. Jiang, C., Li, M., Osadety, K.G, Snowdown, L.R., Obermajer, M. and Fowler, M. 2001. Bakken/Madison petroleum systems in Canadian Williston Basin. Part 2: molecular diagnostic of Bkken and Lodgepole source rocks. Organic Geochemistry, 32, 1037−1054.
  • 40. Justwan, H., Dahl, B. and Isaksen, G.H. 2006. Geochemical characterisation and genetic origin of oils and condensates in the south Viking Graben, Norway. Marine and Petroleum Geology, 23, 213−239.
  • 41. Kmiecik, H. and Knafel, S. 1988. Miospore stratigraphy of the Carboniferous deposits, In: Z. Dembowski and J. Porzycki (Eds), Carboniferous of the Lublin Coal Basin. Prace Państwowego Instytutu Geologicznego, 122, 160−167. [In Polish with English summary]
  • 42. Kotarba, M.J., Clayton, J.L., Rice, D.D. and Wagner, M., 2002. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales. Chemical Geology, 184, 11−35.
  • 43. Kotarba, M.J. and Clayton, J.L. 2003. A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales. International Journal of Coal Geology, 55, 73−94.
  • 44. Krabbe, H. 1996. Biomarker distribution in the lacustrine shales of the Upper Traissic-Lower Jurassic Kap Stewart Formation, Jameson Land, Greenland. Marine and Petroleum Geology, 13, 741−754.
  • 45. Marynowski, L. and Filipiak, P. 2007. Water column euxinia and wildfire evidence during deposition of Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine, 144, 569−595.
  • 46. Migier, T. 1988. Macrofaunal stratigraphy of Carbonuferous. In: Z. Dembowski and J. Porzycki (Eds), Carboniferous of the Lublin Coal Basin. Prace Państwowego Instytutu Geologicznego, 122, 120−131.
  • 47. Miranda, A.C.M.L., Loureiro, M.R.B. and Cardoso, J.N. 1999. Aliphatic and aromatic hydrocarbons in Candiota coal samples: novel series of bicyclic compounds. Organic Geochemistry, 30, 1027−1038.
  • 48. Moldowan, J.M., Seifert, W.K. and Gallegos, E.J. 1985. Relationships between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69, 1255−1268.
  • 49. Mostafa, A.R. and Younes, M.A. 2001. Significance of organic matter in recording paleoenvironmental conditions of the Safa Formation coal sequence, Maghara Area, North Sinai, Egypt. International Journal of Coal Geology, 47, 9−21.
  • 50. Musiał, Ł. and Tabor, M. 1988. Microfaunal stratigraphy of Carboniferous. In: Z. Dembowski and J. Porzycki (Eds): Carboniferous of the Lublin Coal Basin. Prace Państwowego Instytutu Geologicznego, 122, 88−112. [In Polish with English summary]
  • 51. Narkiewicz, M. (Ed.) 1998. Sedimentary basin analysis of the Polish Liwlands. Prace Państwowego Instytutu Geologicznego, 165, 1−298. [In Polish with English summary]
  • 52. Nichols, J.E., Booth, R.K., Jackson, S.T., Pendall, E.G. and Huang, Y. 2006. Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat. Organic Geochemistry, 37, 1505−1513.
  • 53. Noble, R.A., Alexander, R., Kagi, R.I. and Knox, J. 1985. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochimica et Cosmochimica Acta, 49, 2141−2147.
  • 54. Nott, C.J., Xie, S., Avsejs, L.A. and Maddy, D. 2000. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Organic Geochemistry, 31, 231−235.
  • 55. Oró, J., Tornabene, T.G., Nooner, D.W. and Gelpi, E. 1967. Aliphatic hydrocarbons and fatty acids of some marine and freshwater microorganisms. Journal of Microbiology, 93, 1811−1818.
  • 56. Otto, A., Walther, H. and Püttmann, W. 1997. Sesqui- and diterpenoid biomarkers preserved in Taxodium rich Oligocene oxbow lake clays, Weisselster basin, Germany. Organic Geochemistry, 26, 105−115.
  • 57. Otto, A. and Simoneit, B.R.T. 2001. Chemosystematic and diagenesis of terpenoids in fossil conifer species and sediment from the Eocese Zeitz formation, Saxony, Germany. Geochimica et Cosmochimica Acta, 65, 3505−3527.
  • 58. Ourisson, G., Albrecht, P. and Rohmer, M. 1979. The hopanoids: palaeo-chemistry and biochemistry of a group of natural products. Pure and Applied Chemistry, 51, 709−729.
  • 59. Pancost, R.D., Baas, M., Van Geel, B. and Sinninghe Damsté, J.S. 2002. Biomarkers as a proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Organic Geochemistry, 33, 675−690.
  • 60. Peters, K.E., Walters, C.C. and Moldowan, J.M. 2005. The biomarker guide. Biomarkers and isotopes in petroleum exploration and earth history, pp. 1−1132. 2nd edition, Cambridge University Press, New York.
  • 61. Philp, R.P. 1985. Fossil fuel biomarkers. Methods in Geochemistry and Geophysics, 23, 1−294. Elsevier.
  • 62. Philp, R.P. 1994. Geochemical characteristic of oils derived predominantly from terrigenous source materials. In: A.C. Scott and A.J. Fleet (Ed.), Coal and coal-bearing strata as oil-prone source rocks? Geological Society London Special Publications, 77, 71−91.
  • 63. Piedad-Sánchez, N., Suárez-Ruiz, I., Martinez, L., Izart, A., Elie, M. and Keravis, D. 2004. Organic petrology and geochemistry of the Carboniferous coal seams from the Central Asturian Coal Basin (NW Spain). International Journal of Coal Geology, 57, 211−242.
  • 64. Porzycki, J. 1988. Lithologic and sedimentologic charecteristics of Carboniferous deposits. In: Z. Dembowski and J. Porzycki (Eds), Carboniferous of the Lublin Coal Basin. Prace Państwowego Instytutu Geologicznego, 122, 40−76. [In Polish with English summary]
  • 65. Quirk, M.M., Wardroper, A.M.K., Wheatley, R.E. and Maxwell, J.R. 1984. Extended hopanoids in peat environments. Chemical Geology, 42, 25−43.
  • 66. Radke, M. and Willsch, H. 1994. Extractable alkyldibenzothiophenes in Posidonia shale (Toarcian) source rocks: Relationship of yields to petroleum formation and expulsion. Geochimica et Cosmochimica Acta, 58, 5223−5244.
  • 67. Del Rio, J.C., Garcia-Molla, J., Gonzalez-Vila, F.J. and Martin, F. 1994. Composition and origin of the aliphatic extractable hydrocarbons in the Puertollano (Spain) oil shale. Organic Geochemistry, 21, 897−909.
  • 68. Rontani, J.F. and Volkman, J.K. 2003. Phytol degradation products as biogeochemical tracers in aquatic environments. Organic Geochemistry, 34, 1−35.
  • 69. Rothwell, G.W., Mapes, G. and Hernandez-Castillo, G.R. 2005. Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon, 54, 733−750.
  • 70. Scheffler, K. 2004. Reconstruction of sedimentary environment and climate conditions by multi-geochemical investigations of Late Palaeozoic glacial to postglacial sedimentary sequences from SW-Gondwana. Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Fredrich-Wilhelms-Univeristät, Bonn, http://deposit.ddb.de/
  • 71. Schultze, T. and Michealis, W. 1990. Structure and origin of terpenoid hydrocarbons in some German coals. Organic Geochemistry, 16, 1051−1058.
  • 72. Seifert, W.K. and Moldowan, J.M. 1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42, 77−95.
  • 73. Simoneit, B.R.T. 1977. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochimica et Cosmochimica Acta, 41, 463−476.
  • 74. Simoneit, B.R.T., Leif, R.N., de Aqiuno Neto, F.R., Azevedo, A.D., Pinto, A.C. and Albrecht, P. 1990. On the presence of tricyclic terpana hydrocarbons in Permian tasmanite algae. Naturwissenschaft, 77, 380−383.
  • 75. Simoneit, B.R.T., Schoell, M., Dias, R.F. and de Aqiuno Neto, F.R. 1993. Unusual carbon isotope compositions of biomarker hydrocarbons in a Permian tasmanite. Geochimica et Cosmochimica Acta, 57, 4205−4211.
  • 76. Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Köster, J. Schouten, S., Hayes, J.M. and De Leeuw, J.W. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59, 1895−1900.
  • 77. Soboń-Podgórska, J. 1988. Microfaunal stratigraphy of the Carboniferous deposits (Foraminifers). In: Z. Dembowski and J. Porzycki (Eds): Carboniferous of the Lublin Coal Basin. Prace Państwowego Instytutu Geologicznego, 122, 112−120. [In Polish with English summary]
  • 78. Stachowicz, S. 2005. Problems of output largeness and quality of coal in development plans of Lubelski Węgiel Bogdanka S.A. Polityka Energetyczna, 8, 623−635. [In Polish with English summary]
  • 79. Tissot, B.P. and Welte, D.H. 1984. Petroleum formation and occurrence, pp. 1−699. 2nd Edition, Springer Verlag.
  • 80. Volkman, J.K. and Maxwell, J.R. 1986. Acyclic isoprenoids as biological markers. In: R.B. Johns (Ed.), Biological markers in the sedimentary record. Methods in geochemistry and geophysics, 24, 1−42.
  • 81. Waksmundzka, M. 1998. Depositional architecture of the Carboniferous Lublin Basin. Prace Państwowego Instytutu Geologicznego, In: M. Narkiewicz (Ed.), Sedimentary basin analysis of the Polish Lowlands. Prace Państwowego Instytutu Geologicznego, 165, 89−100. [In Polish with English Sumary]
  • 82. Waksmundzka, M. 2010. Sequence stratigraphy of Carboniferous paralic deposits in the Lublin Basin (SE Poland). Acta Geologica Polonica, 60, 557−579.
  • 83. Waksmundzka, M. 2012. Braided-river and hyperconcentratedflow deposits from the Carboniferous of the Lublin Basin (SE Poland) – a sedimentological study of core data. Geologos, 3, 135−161.
  • 84. Zdanowski, A. 2007. Hard coal and bauxite deposits in the Lublin Carboniferous Basin. Biuletyn Państwowego Instytutu Geologicznego, 422, 35−50. [In Polish with English summary]
  • 85. Zdanowski, A. and Żakowa, H. (Eds) 1995. The Carboniferous system in Poland. Prace Państwowego Instytutu Geologicznego, 148, pp. 1−215.
  • 86. Żelichowski, A.M. 1979. Geological structure of the marginal basin basement at the boundary of its Warsaw and Lublin sections. Geological Quarterly, 23, 152−139. [In Polish with English summary]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4a8013c-dc86-4c78-a2f6-31b706921414
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.