PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Free vibrations spectrum of periodically inhomogeneous Rayleigh beams using the tolerance averaging technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, linear-elastic Rayleigh beams with a periodic structure are considered. Dynamics of such beams is described by partial differential equations with non-continuous highly oscillating coefficients. The analysis of dynamic problems using the aforementioned equations is very often problematic to perform. Thus, other simplified models of Rayleigh beams are proposed. Some of these models are based on the concept of the effective stiffness. Among them, one can distinguish the theory of asymptotic homogenization. However, in these models, the size of the mesostructure parameter (the size of a periodicity cell) is often neglected. Therefore, a non-asymptotic averaged model of the periodic beam is introduced, called the tolerance model, which is derived by applying the tolerance averaging technique (TA). The obtained tolerance model equations have constant coefficients, and in contrast to other averaged models, some of them depend on the size of the periodicity cell.
Rocznik
Strony
141--154
Opis fizyczny
Bibliogr 30 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Department of Structural Mechanics, Łódź, Poland
  • Lodz University of Technology, Department of Structural Mechanics, Łódź, Poland
  • Lodz University of Technology, Department of Structural Mechanics, Łódź, Poland
Bibliografia
  • 1. Awrejcewicz J., 2010, Mathematical Modelling and Analysis in Continuum Mechanics of Microstructured Media: Professor Margaret Woźniak Pro Memoria: Sapiens Mortem Non Timet, Silesian University of Technology Publisher
  • 2. Chen T., 2013, Investigations on flexural wave propagation of a periodic beam using multi- -reflection method, Archive of Applied Mechanics, 83, 2, 315-329
  • 3. Cielecka I., Jędrysiak J., 2006, A non-asymptotic model of dynamics of honeycomb lattice-type plates, Journal of Sound and Vibration, 296, 1, 130-149
  • 4. Domagalski L., Jędrysiak J., 2015, On the tolerance modelling of geometrically nonlinear thin periodic plates, Thin-Walled Structures, 87 (Supplement C), 183-190
  • 5. Domagalski L., Jędrysiak J., 2016, Geometrically nonlinear vibrations of slender meso-periodic beams. The tolerance modeling approach, Composite Structures, 136, 270-277
  • 6. Fung Y., 1965, Foundations of Solid Mechanics, Prentice-Hall International Series in Dynamics, Prentice-Hall
  • 7. Hajianmaleki M., Qatu M.S., 2013, Vibrations of straight and curved composite beams: A review, Composite Structures, 100 (Supplement C), 218-232
  • 8. Jędrysiak J., 2000, On the stability of thin periodic plates, European Journal of Mechanics – A/Solids, 19, 3, 487-502
  • 9. Jędrysiak J., 2003, Free vibrations of thin periodic plates interacting with an elastic periodic foundation, International Journal of Mechanical Sciences, 45, 8, 1411-1428
  • 10. Jędrysiak J., 2013, Modelling of dynamic behaviour of microstructured thin functionally graded plates, Thin-Walled Structures, 71 (Supplement C), 102-107
  • 11. Jędrysiak J., 2014, Free vibrations of thin functionally graded plates with microstructure, Engineering Structures, 75 (Supplement C), 99-112
  • 12. Jędrysiak J., 2017, General and standard tolerance models of thin two-directional periodic plates, [In:] Shell Structures: Theory and Applications, Vol. 4, W. Pietraszkiewicz, W. Witkowski (Edit.), 101-104
  • 13. Jędrysiak J., Michalak B., 2011, On the modelling of stability problems for thin plates with functionally graded structure, Thin-Walled Structures, 49, 5, 627-635
  • 14. Kaźmierczak M., Jędrysiak J., 2011, Tolerance modelling of vibrations of thin functionally graded plates, Thin-Walled Structures, 49, 10, 1295-1303
  • 15. Kohn R.V., Vogelius M., 1984, A new model for thin plates with rapidly varying thickness, International Journal of Solids and Structures, 20, 4, 333-350
  • 16. Kolpakov A., 1991, Calculation of the characteristics of thin elastic rods with a periodic structure, Journal of Applied Mathematics and Mechanics, 55, 3, 358-365
  • 17. Kolpakov A., 1998, Application of homogenization method to justification of 1-D model for beam of periodic structure having initial stresses, International Journal of Solids and Structures, 35, 22, 2847-2859
  • 18. Kolpakov A., 1999, The governing equations of a thin elastic stressed beam with a periodic structure, Journal of Applied Mathematics and Mechanics, 63, 3, 495-504
  • 19. Mazur-Śniady K., 1993, Macro-dynamic of micro-periodic elastic beams, Journal of Theoretical and Applied Mechanics, 31, 4, 781-793
  • 20. Michalak B., 2001, The meso-shape functions for the meso-structural models of wavy-plates, ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte Mathematik und Mechanik, 81, 9, 639-641
  • 21. Papanicolau G., Bensoussan A., Lions J., 1978, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, Elsevier Science
  • 22. Sanchez-Palencia E. , 1980, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, Springer-Verlag
  • 23. Tomczyk B., 2013. Length-scale effect in dynamics and stability of thin periodic cylindrical shells, Research Bulletin, 466, 1-163
  • 24. Woźniak C., Michalak B., Jędrysiak J., 2008, Thermomechanics of Microheterogeneous Solids and Structures: Tolerance Averaging Approach, Monografie – Lodz University of Technology, Lodz University of Technology Publisher
  • 25. Woźniak C., Wierzbicki E., 2000, Averaging Techniques in Thermomechanics of Composite Solids: Tolerance Averaging Versus Homogenization, Czestochowa University of Technology Publisher
  • 26. Xiang H.-J., Shi Z.-F., 2009, Analysis of flexural vibration band gaps in periodic beams using differential quadrature method, Computers and Structures, 87, 23, 1559-1566
  • 27. Xu Y., Zhou X., Wang W., Wang L., Peng F., Li B., 2016, On natural frequencies of non- -uniform beams modulated by finite periodic cells, Physics Letters A, 380, 40, 3278-3283
  • 28. Yu D., Wen J., Shen H., Xiao Y., Wen X., 2012, Propagation of flexural wave in periodic beam on elastic foundations, Physics Letters A, 376, 4, 626-630
  • 29. Zhikov V., Kozlov S., Oleınik O., 1994, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag
  • 30. Zienkiewicz O., Taylor R., Zhu J., 2013, The Finite Element Method: Its Basis and Fundamentals. The Finite Element Method, Elsevier Science
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4a70a2b-47b2-490b-ae25-86b735658f63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.