PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymptotic behavior of positive solutions of a semilinear Dirichlet problem in the annulus

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we establish existence and asymptotic behavior of a positive clas­sical solution to the following semilinear boundary value problem: [formula] Here O is an annulus in [formula] and q is a positive function in [formula], satisfying some appropriate assumptions related to Karamata regular variation theory. Our arguments combine a method of sub- and supersolutions with Karamata regular variation theory.
Rocznik
Strony
21--36
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Campus Universitaire Faculte des Sciences de Tunis Departement de Mathematiques 2092 Tunis, Tunisia
autor
  • Campus Universitaire Faculte des Sciences de Tunis Departement de Mathematiques 2092 Tunis, Tunisia
Bibliografia
  • [1] D. Arcoya, Positive solutions for semilinear Dirichlet problems in an annulus, J. Dif­ferential Equations 94 (1991), 217-227.
  • [2] S. Ben Othman, H. Maagli, S. Masmoudi, M. Zribi, Exat asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems, Nonlinear Anal. 71 (2009), 4137-4150.
  • [3] F. Catrina, Nonexistence of positive radial solutions for a problem with singular poten­tial, Adv. Nonlinear Anal. 3 (2014) 1, 1-13.
  • [4] A.B. Cavalheiro, Existence and uniqueness of the solutions of some degenerate nonlinear elliptic equations, Opuscula Math. 34 (2014) 1, 15-28.
  • [5] R. Chemmam, H. Maagli, S. Masmoudi, M. Zribi, Combined effects in nonlinear singular-elliptic problems in a bounded domain, Adv. Nonlinear Anal. 1 (2012), 301-318.
  • [6] R. Chemmam, A. Dhifli, H. Maagli, Asymptotic behavior of ground state solutions for semilinear and singular Dirichlet problem, Electron. J. Differential Equations 88 (2011), 1-12.
  • [7] M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
  • [8] X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations 70 (1987), 69-92.
  • [9] M. Ghergu, V.D. Radulescu, On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl. 311 (2005), 635-646.
  • [10] M. Ghergu, V.D. Radulescu, Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Applications, Vol. 37, Oxford Uni­versity Press, 2008, 320 pp.
  • [11] M. Ghergu, V.D. Radulescu, Nonlinear PDEs Mathematical Models in Biology, Chem­istry and Population Genetics, Springer Monographs in Mathematics, Springer Verlag, 2012.
  • [12] S. Gontara, H. Maagli, S. Masmoudi, S. Turki, Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet problem, J. Math. Anal. Appl. 369 (2010), 719-729.
  • [13] S. Jator, Z. Sinkala, Uniqueness of positive radial solutions for Am + f(u) = 0 in the annulus, Int. J. Pure Appl. Math. 12 (2004), 23-31.
  • [14] H. Maagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problems, Nonlinear Anal. 74 (2011), 2941-2947.
  • [15] H. Maagli, S. Turki, Z. Zine El Abidine, Asymptotic behavior of positive solutions of a semilinear Dirichlet problems outside the unit ball, Electron. J. Differential Equations 95 (2013), 1-14.
  • [16] R. Seneta, Regular Varying Functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin, 1976.
  • [17] M. Tang, Uniqueness of positive radial solutions for Am — u + up = 0 on an annulus, J. Differential Equations 189 (2003), 148-160.
  • [18] Z. Zhang, The asymptotic behavior of the unique solution for the singular Lane-Emdem-Fowler equation, J. Math. Anal. Appl. 312 (2005), 33-43.
  • [19] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994), 1-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4a6ed26-b157-40b8-8e1f-1cc666aed6b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.