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ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS
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Abstract. In this paper, we establish existence and asymptotic behavior of a positive clas-
sical solution to the following semilinear boundary value problem:

−∆u = q(x)uσ in Ω, u|∂Ω = 0.

Here Ω is an annulus in Rn, n ≥ 3, σ < 1 and q is a positive function in Cγloc(Ω), 0 < γ < 1,
satisfying some appropriate assumptions related to Karamata regular variation theory. Our
arguments combine a method of sub- and supersolutions with Karamata regular variation
theory.
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1. INTRODUCTION

The general nonlinear following problem
{
−∆u = q(x)f(u), x ∈ Ω,

u > 0 in Ω, u|∂Ω = 0,

has been extensively studied by many authors in general bounded and unbounded
domains Ω in Rn, n ≥ 3, where q is a nonnegative continuous function in Ω and f is a
nonnegative function in (0,+∞) allowed to be singular at u = 0 or satisfying f(0) = 0.
For related results, we refer to [2–7, 9–12, 14, 15, 18]. In this paper, we undertake the
study of the following semilinear Dirichlet problem

{
−∆u = q(x)uσ, x ∈ Ω,

u > 0 in Ω, u|∂Ω = 0,
(1.1)
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where Ω := {x ∈ Rn; 0 < a < |x| < b <∞} is an annulus in Rn, n ≥ 3, σ < 1 and q is
a positive function in Cγloc(Ω), 0 < γ < 1, which may be singular at the boundary of Ω.
Unlike the case of general domains, there is little literature dealing with problems of
type (1.1), in an annulus of Rn. We refer to [1,8,13,17,19]. Namely, for 0 < σ < 1 and
q(x) = g(|x|), where g is a nonnegative function in C1((0,∞)) and positive in [a, b]
such that limr→+∞ inf g(r) > 0, Arcoya proved in [1], by using variational methods
that problem (1.1) has at least one positive radial classical solution.

In this work, by using potential theory tools, we prove the existence of a unique
positive classical solution of problem (1.1) for a larger class of functions q and we
extend the result of Arcoya to the case σ < 1. Further, motivated by the results of
[14], and by applying Karamata regular variation theory, we establish sharp estimates
of the solution of problem (1.1).

To simplify our statements in this paper, we need some notation. We shall use K
to denote the set of Karamata functions L defined on (0, η] by

L(t) := c exp




η∫

t

z(s)

s
ds


 ,

for some η > 0, where c > 0 and z is a continuous function on [0, η] with z(0) = 0.

Remark 1.1. It is obvious that L ∈ K if and only if L is a positive function in
C1((0, η]) such that

lim
t→0+

tL
′
(t)

L(t)
= 0.

Let d := diam(Ω) and η > d. For λ ≤ 2, σ < 1 and L ∈ K such that∫ η
0
t1−λL(t)dt <∞ , we define the function ΨL,λ,σ on (0, d) by

ΨL,λ,σ(t) :=





1, if λ < 1 + σ,



η∫

t

L(s)

s
ds




1
1−σ

, if λ = 1 + σ,

(L(t))
1

1−σ , if 1 + σ < λ < 2,



t∫

0

L(s)

s
ds




1
1−σ

, if λ = 2.

(1.2)

In what follows, we refer to the potential of a nonnegative measurable function f
defined on Ω by

V f(x) =

∫

Ω

G(x, y)f(y)dy, x ∈ Ω,

where G(x, y) is the Green’s function of (−∆) in Ω. We recall that if f ∈ Cγloc(Ω),
0 < γ < 1, then V f ∈ C2,γ

loc (Ω) and satisfies

−∆(V f) = f in Ω. (1.3)
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In particular, if f is a radial positive function in C(Ω) such that

b∫

a

(b− r)(r − a)f(r)dr <∞, (1.4)

then the potential V f is the unique positive classical solution of the following problem
{

1
rn−1 (rn−1u′(r))′ = −f(r), a < r < b,

u > 0 in Ω, u(a) = u(b) = 0,

given by

V f(r)

=
1

(n− 2)(a2−n − b2−n)

b∫

a

tn−1f(t)(max(r, t)2−n − b2−n)(a2−n −min(r, t)2−n)dt.

(1.5)

In the sequel, for two nonnegative functions f and g defined on a set S, the notation

f(x) ≈ g(x), x ∈ S,

means that there exists c > 0 such that

1

c
f(x) ≤ g(x) ≤ cf(x) for all x ∈ S.

Now, let us introduce our hypothesis on the function q.

(H) q is a positive function in Cγloc(Ω), 0 < γ < 1, satisfying x ∈ Ω,

q(x) ≈ (|x| − a)−λ1(b− |x|)−λ2L1(|x| − a)L2(b− |x|),

where λ1, λ2 ≤ 2 and L1, L2 ∈ K such that for i ∈ {1, 2},
η∫

0

t1−λiLi(t)dt <∞.

Remark 1.2. For i ∈ {1, 2}, we need to verify condition
∫ η

0
t1−λiLi(t)dt < ∞, in

hypothesis (H), only if λi = 2. This is due to Lemma 2.1 below.

A typical example of a function satisfying (H) is given below.

Example 1.3. Let q be the function defined in Ω by

q(x) = (|x| − a)−λ1(b− |x|)−λ2

(
log
(3(b− a)

|x| − a
)

log
(3(b− a)

b− |x|
))−µ

,

where the real numbers λ1, λ2 ≤ 2, and µ satisfy one of the following conditions:



24 Safa Dridi and Bilel Khamessi

(i) µ ∈ R if λ1, λ2 < 2,
(ii) µ > 1 if λ1 = 2 or λ2 = 2.

Then, if one of the above conditions is satisfied, the function q satisfies (H).

Now, we are ready to state our main result.

Theorem 1.4. Assume (H). Then problem (1.1) has a unique positive classical so-
lution satisfying for x ∈ Ω,

u(x) ≈ θ(x), (1.6)

where θ is the function defined on Ω by

θ(x) := (|x|−a)min(1,
2−λ1
1−σ )(b−|x|)min(1,

2−λ2
1−σ )ΨL1,λ1,σ(|x|−a)ΨL2,λ2,σ(b−|x|). (1.7)

The proof of Theorem 1.4 is based on the sub-supersolution method and potential
theory tools.

The paper is organized as follows. In Section 2, we state some already known
results on functions in K, useful for our study and we give estimates on some potential
functions. Section 3 deals with the proof of Theorem 1.4. The last section is reserved
for some applications. Throughout, the letter c will denote a generic positive constant
which may vary from line to line.

2. PRELIMINARY RESULTS

2.1. TECHNICAL LEMMAS

In this section, we recapitulate some properties of functions belonging to the class
K which need to be used in the paper. Applying Karamata’s theorem, we get the
following.

Lemma 2.1 ([16]). Let γ ∈ R and L be a function in K defined on (0, η], η > d. We
have:

(i) If γ > −1, then
∫ η

0
sγL(s)ds converges and

t∫

0

sγL(s)ds ∼
t→0+

t1+γL(t)

1 + γ
.

(ii) If γ < −1, then
∫ η

0
sγL(s)ds diverges and

η∫

t

sγL(s)ds ∼
t→0+

− t
1+γL(t)

1 + γ
.

Lemma 2.2 ([5, 16]). Let L1, L2 ∈ K be defined on (0, η] for some η > d, p ∈ R and
ε > 0. Then we have the following assertions:
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(i) L1L2 ∈ K, Lp1 ∈ K.
(ii) lim

t→0+
tεL1(t) = 0.

(iii) lim
t→0+

L1(t)∫ η
t
L1(s)
s ds

= 0.

(iv) If
η∫
0

L1(s)
s ds converges, then lim

t→0+

L1(t)∫ t
0
L1(s)
s ds

= 0.

Remark 2.3. Let L ∈ K defined on (0, η], η > d. Then using Remark 1.1 and
Lemma 2.2 (iii), we deduce that

t 7−→
η∫

t

L(s)

s
ds ∈ K.

If further
∫ η

0
L(s)
s ds converges, we obtain by Remark 1.1 and Lemma 2.2 (iv) that

t 7−→
t∫

0

L(s)

s
ds ∈ K.

Lemma 2.4. Let λ ≤ 2 and L ∈ K defined on (0, η], η > d, be such that∫ η
0
t1−λL(t)dt <∞. For t ∈ (0, b−a4 ), we put

I(t) =

t∫

0

s1−λL(s)ds and J(t) = t


1 +

b−a
2∫

t

s−λL(s)ds


 .

Then we have

I(t) ≈





t2−λL(t), if λ < 2,
t∫

0

L(s)

s
ds, if λ = 2,

and

J(t) ≈





t, if λ < 1,

t

b−a
2∫

t

L(s)

s
ds, if λ = 1,

t2−λL(t), if 1 < λ ≤ 2.

Proof. By using Lemma 2.1 (i), we have for t ∈ (0, b−a4 ),

I(t) ≈





t2−λL(t), if λ < 2,
t∫

0

L(s)

s
ds, if λ = 2.
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Next, to estimate J , we distinguish the following cases.
Case 1. If λ < 1, then applying Lemma 2.1 (i), we have

∫ η
0
s−λL(s)ds <∞. Thus

J(t) ≈ t for t ∈
(

0,
b− a

4

)
.

Case 2. If λ = 1, then using the fact that
∫ η

0
L(s)
s ds <∞, we get

1 +

b−a
2∫

t

L(s)

s
ds ≈

b−a
2∫

t

L(s)

s
ds for t ∈

(
0,
b− a

4

)
.

This yields

J(t) ≈ t

b−a
2∫

t

L(s)

s
ds for t ∈

(
0,
b− a

4

)
.

Case 3. If 1 < λ ≤ 2, then by Lemma 2.1 (ii), we obtain that
∫ η

0
s−λL(s)ds diverges

and
∫ η
t
s−λL(s)ds ≈ t1−λL(t). So, applying Lemma 2.1 (i), we have

J(t) ≈ t

b−a
2∫

t

s−λL(s)ds ≈ t2−λL(t) for t ∈
(

0,
b− a

4

)
.

2.2. ASYMPTOTIC BEHAVIOR OF SOME POTENTIAL FUNCTIONS

In what follows, we are going to give estimates on the potential functions V q and
V (qθσ), where q is a function satisfying (H) and θ is the function given in (1.7).

Proposition 2.5. Let q be a function satisfying (H). Then we have for x ∈ Ω,

V q(x) ≈ (|x| − a)min(1,2−λ1)(b− |x|)min(1,2−λ2)ΨL1,λ1,0(|x| − a)ΨL2,λ2,0(b− |x|).

Proof. Let q be a function satisfying (H). Then we have for x ∈ Ω,

q(x) ≈ (|x| − a)−λ1(b− |x|)−λ2L1(|x| − a)L2(b− |x|),

where L1, L2 ∈ K, satisfying
∫ η

0
t1−λ1L1(t)dt < ∞ and

∫ η
0
t1−λ2L2(t)dt < ∞. Now,

using the fact that the function

x 7→ (|x| − a)−λ1(b− |x|)−λ2L1(|x| − a)L2(b− |x|)

is radial and satisfies the condition (1.4) we deduce by (1.5) that for x ∈ Ω

V q(x) ≈
b∫

a

(max(|x|, r)2−n − b2−n)(a2−n −min(|x|, r)2−n)

× (r − a)−λ1(b− r)−λ2L1(r − a)L2(b− r)dr.
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Put

h(t) :=

b∫

a

(max(t, r)2−n − b2−n)(a2−n −min(t, r)2−n)

× (r − a)−λ1(b− r)−λ2L1(r − a)L2(b− r)dr, t ∈ (a, b).

To prove the result, it sufficient to show that

h(|x|) ≈ (|x| − a)min(1,2−λ1)(b− |x|)min(1,2−λ2)

×ΨL1,λ1,0(|x| − a)ΨL2,λ2,0(b− |x|) for x ∈ Ω.

To reach our estimates, we distinguish the following cases.
Case 1. a < |x| < a + b−a

4 . We have |x|2−n − b2−n ≈ 1 and a2−n − |x|2−n ≈ |x| − a.
This implies that

h(|x|) ≈
|x|∫

a

(a2−n − r2−n)(r − a)−λ1L1(r − a)(b− r)−λ2L2(b− r)dr

+ (|x| − a)




b∫

|x|

(r − a)−λ1L1(r − a)(r2−n − b2−n)(b− r)−λ2L2(b− r)dr


 .

Using that for r ∈ (a, a+ b−a
2 )

a2−n − r2−n ≈ r − a and (r2−n − b2−n)(b− r)−λ2L2(b− r) ≈ 1,

we obtain that

|x|∫

a

(a2−n− r2−n)(r− a)−λ1L1(r− a)(b− r)−λ2L2(b− r)dr ≈
|x|∫

a

(r− a)1−λ1L1(r− a)dr

and

a+ b−a
2∫

|x|

(r − a)−λ1L1(r − a)(r2−n − b2−n)(b− r)−λ2L2(b− r)dr

≈
a+ b−a

2∫

|x|

(r − a)−λ1L1(r − a)dr.

Now, since for r ∈ (a+ b−a
2 , b), we have

r2−n − b2−n ≈ b− r and (r − a)−λ1L1(r − a) ≈ 1,
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we get

b∫

a+ b−a
2

(r − a)−λ1L1(r − a)(r2−n − b2−n)(b− r)−λ2L2(b− r)dr

≈
b∫

a+ b−a
2

(b− r)1−λ2L2(b− r)dr.

That is

h(|x|) ≈
|x|−a∫

0

s1−λ1L1(s)ds

+ (|x| − a)




b−a
2∫

|x|−a

s−λ1L1(s)ds+

b−a
2∫

0

s1−λ2L2(s)ds


 .

Since
∫ b−a

2

0
s1−λ2L2(s)ds <∞, we get

h(|x|) ≈
|x|−a∫

0

s1−λ1L1(s)ds+ (|x| − a)




b−a
2∫

|x|−a

s−λ1L1(s)ds+ 1




= I(|x| − a) + J(|x| − a),

where I and J are the functions given in Lemma 2.4, by replacing L by L1 and λ
by λ1. So, we reach

h(|x|) ≈





(|x| − a)2−λ1L1(|x| − a) + (|x| − a), if λ1 < 1,

(|x| − a)


L1(|x| − a) +

b−a
2∫

|x|−a

L1(s)

s
ds


 , if λ1 = 1,

(|x| − a)2−λ1L1(|x| − a), if 1 < λ1 < 2,

|x|−a∫

0

L1(s)

s
ds+ L1(|x| − a), if λ1 = 2.
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Using Lemma 2.2, we deduce that

h(|x|) ≈





|x| − a, if λ1 < 1,

(|x| − a)

η∫

|x|−a

L1(s)

s
ds, if λ1 = 1,

(|x| − a)2−λ1L1(|x| − a), if 1 < λ1 < 2,

|x|−a∫

0

L1(s)

s
ds, if λ1 = 2.

Hence, for a < |x| < a+ b−a
4 ,

V q(x) ≈ (|x| − a)min(1,2−λ1)ΨL1,λ1,0(|x| − a). (2.1)

Case 2. a + b−a
4 ≤ |x| ≤ b − b−a

4 . Since the function h is continuous and positive in
[a+ b−a

4 , b− b−a
4 ], then we have

h(t) ≈ 1 for t ∈
[
a+

b− a
4

, b− b− a
4

]
.

So, for a+ b−a
4 ≤ |x| ≤ b− b−a

4 ,

V q(x) ≈ 1. (2.2)

On the other hand, we have for a+ b−a
4 ≤ |x| ≤ b− b−a

4 ,

(|x| − a)min(1,2−λ1)(b− |x|)min(1,2−λ2)ΨL1,λ1,0(|x| − a)ΨL2,λ2,0(b− |x|) ≈ 1,

which gives the result.
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Case 3. b − b−a
4 < |x| < b. We have |x|2−n − b2−n ≈ b − |x| and a2−n − |x|2−n ≈ 1.

Then

h(|x|) ≈ (b− |x|)



|x|∫

a

(a2−n − r2−n)(r − a)−λ1L1(r − a)(b− r)−λ2L2(b− r)dr




+

b∫

|x|

(r − a)−λ1L1(r − a)(r2−n − b2−n)(b− r)−λ2L2(b− r)dr.

Using that for r ∈ (a, b− b−a
4 )

a2−n − r2−n ≈ r − a and (b− r)−λ2L2(b− r) ≈ 1,

we obtain
b− b−a4∫

a

(a2−n − r2−n)(r − a)−λ1L1(r − a)(b− r)−λ2L2(b− r)dr

≈
b− b−a4∫

a

(r − a)1−λ1L1(r − a)dr.

Now, since we have

(a2−n − r2−n)(r − a)−λ1L1(r − a) ≈ 1 for r ∈
(
b− b− a

4
, |x|
)
,

we get
|x|∫

b− b−a4

(a2−n − r2−n)(r − a)−λ1L1(r − a)(b− r)−λ2L2(b− r)dr

≈
|x|∫

b− b−a4

(b− r)−λ2L2(b− r)dr.

Moreover, we have r2−n − b2−n ≈ b − r and (r − a)−λ1L1(r − a) ≈ 1 for r ∈ (|x|, b).
Then we reach

h(|x|) ≈ (b− |x|)




b− b−a4∫

a

(r − a)1−λ1L1(r − a)dr +

|x|∫

b− b−a4

(b− r)−λ2L2(b− r)dr




+

b∫

|x|

(b− r)1−λ2L2(b− r)dr.

(2.3)
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Hence,

h(|x|) ≈
b−|x|∫

0

s1−λ2L2(s)ds

+ (b− |x|)




3(b−a)
4∫

0

s1−λ1L1(s)ds+

b−a
4∫

b−|x|

s−λ2L2(s)ds


 .

Since
∫ 3(b−a)

4

0
s1−λ1L1(s)ds <∞, we deduce that

h(|x|) ≈
b−|x|∫

0

s1−λ2L2(s)ds+ (b− |x|)


1 +

b−a
2∫

b−|x|

s−λ2L2(s)ds




= I(b− |x|) + J(b− |x|),

where I and J are given in Lemma 2.4, by replacing L by L2 and λ by λ2. So, we
have

h(|x|) ≈





(b− |x|)2−λ2L2(b− |x|) + (b− |x|), if λ2 < 1,

(b− |x|)


L2(b− |x|) +

b−a
2∫

b−|x|

L2(s)

s
ds


 , if λ2 = 1,

(b− |x|)2−λ2L2(b− |x|), if 1 < λ2 < 2,
b−|x|∫

0

L2(s)

s
ds+ L2(b− |x|), if λ2 = 2.

Using Lemma 2.2, we get

h(|x|) ≈





b− |x|, if λ2 < 1,

(b− |x|)
η∫

b−|x|

L2(s)

s
ds, if λ2 = 1,

(b− |x|)2−λ2L2(b− |x|), if 1 < λ2 < 2,
b−|x|∫

0

L2(s)

s
ds, if λ2 = 2.

That is, for b− b−a
4 < |x| < b, we obtain

V q(x) ≈ (b− |x|)min(1,2−λ2)ΨL2,λ2,0(b− |x|). (2.4)
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Combining (2.1), (2.2) and (2.4), we conclude that for x ∈ Ω,

V q(x) ≈ (|x| − a)min(1,2−λ1)(b− |x|)min(1,2−λ2)ΨL1,λ1,0(|x| − a)ΨL2,λ2,0(b− |x|).
This completes the proof.

The following proposition plays a crucial role in the proof of our main result.

Proposition 2.6. Let q be a function satisfying (H) and let θ be the function given
by (1.7). Then for x ∈ Ω, we have

V (aθσ)(x) ≈ θ(x).

Proof. Let λ1, λ2 ≤ 2 and L1, L2 ∈ K satisfying
∫ η

0
t1−λ1L1(t)dt < ∞ and∫ η

0
t1−λ2L2(t)dt <∞, such that for x ∈ Ω,

q(x) ≈ (|x| − a)−λ1(b− |x|)−λ2L1(|x| − a)L2(b− |x|).
Putting µ1 = λ1 − σmin(1, 2−λ1

1−σ ) and µ2 = λ2 − σmin(1, 2−λ2

1−σ ). Then it is obvious
to verify that µ1, µ2 ≤ 2 and by using (1.7), we have for x ∈ Ω,

q(x)θσ(x)

≈ (|x| − a)−µ1(b− |x|)−µ2L1(|x| − a)L2(b− |x|)Ψσ
L1,λ1,σ(|x| − a)Ψσ

L2,λ2,σ(b− |x|)
:= (|x| − a)−µ1(b− |x|)−µ2L̃1(|x| − a)L̃2(b− |x|).

Using Remark 2.3, Lemmas 2.1 and 2.2, we deduce that L̃1, L̃2 ∈ K satisfying
η∫

0

t1−µ1L̃1(t)dt <∞ and

η∫

0

t1−µ2L̃2(t)dt <∞.

Hence, it follows by Proposition 2.5 that

V (qθσ)(x) ≈ (|x| − a)min(1,2−µ1)(b− |x|)min(1,2−µ2)ΨL̃1,µ1,0
(|x| − a)ΨL̃2,µ2,0

(b− |x|).

By calculus, we verify that, for i ∈ {1, 2}, min(1, 2 − µi) = min(1, 2−λi
1−σ ) and

ΨL̃i,µi,0
= ΨLi,λi,σ. So, we get

V (qθσ)(x) ≈ (|x| − a)min(1,
2−λ1
1−σ )(b− |x|)min(1,

2−λ2
1−σ )ΨL1,λ1,σ(|x| − a)ΨL2,λ2,σ(b− |x|).

This ends the proof.

3. PROOF OF THEOREM 1.4

3.1. EXISTENCE AND ASYMPTOTIC BEHAVIOR

Let q be a function satisfying (H). The main idea is to find a subsolution and su-
persolution to the problem (1.1) of the form cV (qΦσ), where c > 0 and Φ(x) =
(|x| − a)−α(b− |x|)−βL̃1(|x| − a)L̃2(b− |x|), which will satisfy

V (qΦσ) ≈ Φ. (3.1)
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The choice of the real α, β and the functions L̃1, L̃2 ∈ K are such that (3.1) is satisfied.
By Proposition 2.6, the function θ satisfies (3.1). Hence, let v := V (qθσ) and letM > 1
such that

1

M
θ ≤ v ≤Mθ, (3.2)

that is, for σ < 1, we have
1

M |σ|
θσ ≤ vσ ≤M |σ|θσ.

Put c := M
|σ|
1−σ . Then it follows from (1.3) that u = 1

cv and ū = cv are respectively
a subsolution and a supersolution of problem (1.1).

Now, since c ≥ 1, we get u(x) ≤ ū(x) in Ω and thanks to the method of sub
and supersolution, it follows that problem (1.1) has a classical solution u satisfying
u ≤ u ≤ ū in Ω.

Finally, we deduce by using (3.2) that u satisfies (1.6). This completes the proof.

3.2. UNIQUENESS

If σ < 0, the uniqueness of the solution to problem (1.1) was established in recent
papers (see for instance [2]). For the case 0 ≤ σ < 1, we aim to show that problem
(1.1) has a unique positive classical solution in the cone

Y := {u ∈ C(Ω) ∩ C2(Ω) : u(x) ≈ θ(x)}.
Indeed, let u and v be two solutions of problem (1.1) in Y . Then there exists M ≥ 1
such that

1

M
≤ u

v
≤M.

This implies that the set J := {t ∈ (1,+∞) : 1
tu ≤ v ≤ tu} is not empty. Now, put

c := inf J, then we aim to show that c = 1. Suppose that c > 1, we obtain that
{
−∆(v − c−σu) = q(x)(vσ − c−σuσ) ≥ 0,

(v − c−σu)|∂Ω = 0.

By the maximum principle, we deduce that v ≥ c−σu. Using the same argument, we
get v ≤ cσu. This implies that cσ ∈ J, but since σ < 1, we have cσ < c. We reach a
contradiction with the fact that c = inf J . Hence, we have c = 1 and so u = v. This
ends the proof.

4. APPLICATIONS

4.1. FIRST APPLICATION

Let η > d and q be a positive function in Cγloc(Ω), 0 < γ < 1, satisfying for each x ∈ Ω,

q(x) = (|x| − a)−2(b− |x|)−λ
(

log
(3(b− a)

|x| − a
))−2(

log
(3(b− a)

b− |x|
))−µ

,
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where the real numbers λ ≤ 2 and µ satisfy one of the following conditions:

(i) λ < 2 and µ ∈ R,
(ii) λ = 2 and µ > 1.

Then, using Theorem 1.4, we deduce that problem (1.1) has a unique positive classical
solution u satisfying for each x ∈ Ω,

u(x) ≈
(

log
(3(b− a)

|x| − a
)) −1

1−σ





(
log( 3(b−a)

b−|x| )
) 1−µ

1−σ
, if λ = 2

and µ > 1,

(b− |x|) 2−λ
1−σ

(
log( 3(b−a)

b−|x| )
) −µ

1−σ
, if 1 + σ < λ < 2,

b− |x|, if λ = 1 + σ

and µ > 1,

(b− |x|)
(

log(log 3(b−a)
b−|x| )

) 1
1−σ

, if λ = 1 + σ

and µ = 1,

(b− |x|)
(

log( 3(b−a)
b−|x| )

) 1−µ
1−σ

, if λ = 1 + σ

and µ < 1,

b− |x|, if λ < 1 + σ.

4.2. SECOND APPLICATION

Let q be a function satisfying (H) and let σ, β < 1. We are interested in the following
Dirichlet problem: {

−∆u+ β
u |∇u|2 = q(x)uσ, x ∈ Ω,

u > 0 in Ω, u|∂Ω = 0.
(4.1)

Put v = u1−β . Then by calculus, we verify that v satisfies
{
−∆v = (1− β)q(x)v

σ−β
1−β , x ∈ Ω,

v > 0 in Ω, v|∂Ω = 0.
(4.2)

Applying Theorem 1.4 to problem (4.2), we obtain that there exists a unique positive
classical solution v such that for each x ∈ Ω,

v(x) ≈ (|x| − a)min(1,
2−λ1
1−µ )(b− |x|)min(1,

2−λ2
1−µ )ΨL1,λ1,µ(|x| − a)ΨL2,λ2,µ(b− |x|),

where µ = σ−β
1−β < 1.

Consequently, we deduce that problem (4.1) has a unique positive solution u ∈
C(Ω) ∩ C2(Ω) satisfying for each x ∈ Ω,

u(x) ≈ (|x| − a)min( 1
1−β ,

2−λ1
1−σ )(b− |x|)min( 1

1−β ,
2−λ2
1−σ )ΨL1,λ1,σ(|x| − a)ΨL2,λ2,σ(b− |x|).
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