PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of new commercial collectors for the recovery of coarse quartz particles in iron ore flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, a small range of commercial collectors is available for the use in reverse iron ore flotation at Vale. This input represents a considerable unit cost, being essential for the concentration of low content itabiritic iron ores. The present work evaluated the reverse cationic flotation of an itabiritic ore with low iron content (39.6% Fe) from the Iron Quadrangle (BR) in bench scale tests, focusing on the use of new collectors to remove coarse quartz. The sample presents 19% of its particles as oversize in the 0.150 mm sieve. The poor flotation of coarse quartz particles (>0.150 mm) causes significant problems in various iron ore flotation circuits by contaminating the concentrate. The study evaluated the performance of 10 new collectors from the etheramine family with different degrees of neutralization and at different collector dosages. The flotation process variables were set as industrially practiced at the Cauê iron ore plant (BR). In tests varying the specific collector dosage, the nonneutralized etheramines showed improved performance compared to the current 50% neutralized etheramine used in the plant, achieving industrial targets: concentrate SiO2 content rate lower than 4.5% (1.4%), tailings iron content lower than 23% (18.94%), metallurgical recovery greater than 66% (74,8%), and Gaudin Selectivity Index greater than 6.6 (10.5). The 0.150 mm oversize in the concentrate, mostly coarse quartz particles, was reduced from 5.7% down to 1.2%, indicating the potential for the industrial application of non-neutralized etheramines in the recovery of coarse quartz.
Słowa kluczowe
Rocznik
Strony
art. no. 174292
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Postgraduate Program in Metallurgical, Materials and Mining Engineering, Professional Master´s Degree, Federal University of Minas Gerais, MG, Brazil
  • Department of Mining Engineering, Federal University of Minas Gerais, MG, Brazil
Bibliografia
  • DANKWAH, J. B., ASAMOAH, R. K., ZANIN, M., & SKINNER, W., 2022. Influence of water rate, gas rate, and bed particle size on bed-level and coarse particle flotation performance. Minerals Engineering, 183, 107622.
  • DING, S., YIN, Q., HE, Q., FENG, X., YANG, C., GUI, X., & XING, Y., 2023. Role of hydrophobic fine particles in coarse particle flotation: An analysis of bubble-particle attachment and detachment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 662, 130980.
  • FILIPPOV, L. O.; SEVEROV, V. V; FILIPPOVA, I. V., 2014. An overview of the beneficiation of iron ores via reverse cationic flotation. International Journal of Mineral Processing, 127.
  • FINCH, J. A., & SMITH, G. W., 1973. Dynamic surface tension of alkaline dodecylamine solutions. Journal of Colloid and Interface Science, 45 (1), 81-91.
  • GlobalData. (2023, August 28). Brazil Iron Ore Mining Market by Reserves and Production, Assets and Projects, Fiscal Regime including Taxes and Royalties, Key Players and Forecast, 2021-2026. https://www.globaldata.com/store/report/brazil-iron-ore-mining-market-analysis.
  • KAPIAMBA, K.F., KIMPIAB, M., 2021. The Effects of Partially Replacing Amine Collectors by a Commercial Frother in a Reverse Cationic Hematite Flotation. Heliyon, 7, 1–8.
  • MAGRIOTIS, R. S., 1995. Efeito do tipo de amina na flotação catiônica reversa de um minério itabirítico. Master's thesis Federal University of Minas Gerais. 75p.
  • MATOS, V. E., 2017. Reagent selectivity in iron ore reverse flotation. Master's thesis Federal University of Minas Gerais. 116p.
  • MATOS, V. E., 2022. Froth properties in cationic flotation performance flotation of iron ore. Doctoral dissertation Federal University of Minas Gerais. 131p.
  • MATOS, V. E., NOGUEIRA, S. C., SILVA, G. R., & PERES, A. E., 2022. Effects of surfactants combination on iron ore flotation. Minerals Engineering, 190, 107910.
  • MATOS, V. E., NOGUEIRA, S. D. C. S., KOWALCZUK, P. B., SILVA, G. R. D., & PERES, A. E. C., 2022a. Differences in etheramines froth properties and the effects on iron ore flotation. Part I: Two-phase Systems. Mineral Processing and Extractive Metallurgy Review, 43(2), 209-216.
  • MATOS, V. E., NOGUEIRA, S. D. C. S., SILVA, G., KOWALCZUK, P. B., & PERES, A. E. C., 2022b. Differences in etheramines froth properties and the effects on iron ore flotation. Part II: three-phase systems. Mineral Processing and Extractive Metallurgy Review, 43(2), 243-250.
  • NAZARI, S., & HASSANZADEH, A., 2020. The effect of reagent type on generating bulk sub-micron (nano) bubbles and flotation kinetics of coarse-sized quartz particles. Powder Technology, 374, 160-171.
  • NUMELA, W.; IWASAKI, I., 1986. Iron ore flotation. In: Advances in Mineral Processing. Colorado: Ed. Littleton, SME.
  • NUNES, A. P. L., PERES, A. E. C., CHAVES, A. P., & FERREIRA, W. R., 2019. Effect of alkyl chain length of amines on fluorapatite and aluminium phosphates floatabilities. Journal of Materials Research and Technology, 8 (4), 3623-3634.
  • PATTANAIK, A., & VENUGOPAL, R., 2018. Investigation of adsorption mechanism of reagents (surfactants) system and its applicability in iron ore flotation–an overview. Colloid and Interface Science Communications, 25, 41-65.
  • PEARSE, M. J., 2005. An overview of the use of chemical reagents in mineral processing. Minerals Engineering, 18, 139–149.
  • PERES, A. E. C., SALUM, M. J. G, VALADÃO, G. E. S., ARAUJO, A. C., 2007. Métodos de concentração. In: VALADÃO, G. E. S. (Org.); ARAUJO, A. C. (Org.). Introdução ao tratamento de minérios. Belo Horizonte: Editora UFMG, Cap. 6.
  • RAHMAN, R. M., ATA, S., & JAMESON, G. J., 2012. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing, 106, 70-77.
  • SAFARI, M., HOSEINIAN, F. S., DEGLON, D., LEAL FILHO, L. S., & PINTO, T. S., 2020. Investigation of the reverse flotation of iron ore in three different flotation cells: Mechanical, oscillating grid and pneumatic. Minerals Engineering, 150, 106283.
  • SAFARI, M., HOSEINIAN, F. S., DEGLON, D., LEAL FILHO, L., & PINTO, T. S., 2022. Impact of flotation operational parameters on the optimization of fine and coarse Itabirite iron ore beneficiation. Powder Technology, 408, 117772.
  • USGS. (2023, August 28). Iron Ore Statistics and Information. https://www.usgs.gov/centers/national-mineralsinformation-center/iron-ore-statistics-and-information.
  • VIEIRA, A. M.; PERES, A. E. C., 2007. The effect of amine type, pH, and size range in the flotation of quartz. Minerals Engineering, 20, 1008-1013.
  • VIEIRA, A.M., PERES, A.E.C., 2015. Influência de variáveis de flotação na recuperação de quartzo fino, médio e grosso. Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa. Belo Horizonte.
  • XU, D., AMETOV, I., & GRANO, S. R., 2012. Quantifying rheological and fine particle attachment contributions to coarse particle recovery in flotation. Minerals Engineering, 39, 89-98.
  • XU, D., AMETOV, I., & GRANO, S. R., 2011. Detachment of coarse particles from oscillating bubbles—The effect of particle contact angle, shape and medium viscosity. International Journal of Mineral Processing, 101 (1-4), 50-57.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4a66d23-1c6c-47bd-bc7a-14ae859c5c2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.