Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to safety requirements, insensitive behaviour under slow thermal heating (cook-off) conditions is a desirable behaviour for today’s munitions. In this paper a cook-off device is designed to test two groups of RDX-based PBX explosives. In the first group the binder type was varied and in the second group the binder content of the RDX-based explosive was changed. Eleven samples were examined in order to evaluate the influence of four different binders and seven different binder contents on the shell deformation and the degree of the involved reaction. The test results showed that the degree of the reaction can be improved by changing the binder content, but not by the binder type. This phenomenon was explained by the thermal-conduction theory.
Słowa kluczowe
Rocznik
Tom
Strony
339--350
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- North University of China, 030051 Shanxi, China
autor
- North University of China, 030051 Shanxi, China
autor
- 213th Research Institute of China Ordnance Industry, 710061 Xi’an, China
autor
- North University of China, 030051 Shanxi, China
autor
- North University of China, 030051 Shanxi, China
autor
- North University of China, 030051 Shanxi, China
autor
- North University of China, 030051 Shanxi, China
autor
- North University of China, 030051 Shanxi, China
Bibliografia
- [1] Stepanov, V.; Anglade, V.; Balas Hummers, W. A.; Bezmelnitsyn, A. V.; Krasnoperov, L. N. Production and Sensitivity Evaluation of Nanocrystalline RDX-based Explosive Compositions. Propellants Explos. Pyrotech. 2011, 36(3):240-246.
- [2] Stepanov, V.; Willey, T. M.; Ilavsky, J.; Gelb, J.; Qiu, H. Structural Characterization of RDX-Based Explosive Nanocomposites. Propellants Explos. Pyrotech. 2013, 38(3): 386-393.
- [3] Qu, K. P.; Shen, F.; Wang, S. Y.; Xiao, W.; Li, L. L. Research on Impact Safety of a RDX-based PBX Explosive at Different Stress Rate. Chinese Journal of Explosives & Propellants 2014, 37(6): 40-43.
- [4] Qiu, H.; Stepanov, V.; Di, S. A.; Chou, T.; Lee, W. Y. RDX-based Nanocomposite Microparticles for Significantly Reduced Shock Sensitivity. J. Hazard. Mater. 2011, 185(1): 489-493.
- [5] Slow Heating Tests for Munitions. STANAG 4382 (Ed. 1), Military Agency for Standardization, AC/3 10-D/100, June 1992.
- [6] Brousseau, P.; Brochu, S.; Brassard, M.; Ampleman, G.; Thiboutot, S.; Côté, F. RIGHTTRAC Technology Demonstration Program: Preliminary IM Tests. 2010 Insensitive Munitions & Energetic Materials Technical Symposium, Munich 2010, 11-14.
- [7] Talawar, M. B.; Agrawal, A. P.; Anniyappan, M.; Wani, D. S.; Bansode, M. K.; Gore, G. M. Primary Explosives: Electrostatic Discharge Initiation, Additive Effect and Its Relation to Thermal and Explosive Characteristics. J. Hazard. Mater. 2006, 137(2): 1074-1078.
- [8] Kondrikov, B. N. Investigation of Cook-off-type Test Methods. 11th Int. Detonation Symposium, Colorado 1998, 135-142.
- [9] Li, W.; Yu, Y.; Rui, Y.; Yang, H. Simulation of Cook-off for AP/HTPB Composition Propellant in Base Bleed Unit at Different Heating Rates. Explosion & Shock Waves 2017, 37(1): 46-52.
- [10] Nassim, B.; Zhang, Q. Thermal Stability of Explosive Mixture with Additives at Different Ambient Temperatures. Propellants Explos. Pyrotech. 2018, 43(2): 177-187.
- [11] Sandusky, H. W.; Chambers, G. P.; Erikson, W. W.; Schmitt, R. G. Validation Experiments for Modeling Slow Cook-off. 12th Int. Detonation Symposium 2002, 863-872.
- [12] Kaneshige, M. J.; Renlund, A. M.; Schmitt, R. G.; Erikson, W. W. Cook-off Experiments for Model Validation at Sandia National Laboratories. Albuquerque NM 2002, 87185.
- [13] Zhi, X. Q.; Hu, S. Q.; Li, J. J.; Xu, S. P.; Li, Y. RDX-based Booster Explosive Response Character under Slow Cook-off Conditions. J. Energ. Mater. 2011, 29(2):75-87.
- [14] Feng, C. G.; Zhang, R.; Chen, L. The Cook-off Test and Its Numerical Simulation of RDX. J. Energ. Mater. 2004, 12: 193-198.
- [15] Nichols, A. L. Improved Cook-off Modeling of Multi-component Cast Explosives. Report No. LLNL-CONF-737694, 2017.
- [16] Nichols, A. L.; Schofield, S. Modeling the Response of Fluid/Melt Explosives to Slow Cook-off. 15th Int. Detonation Symposium 2014, 18(7): 881-900.
- [17] Xu, W.; An, C.; Wang, J.; Dong, J.; Geng, X. Preparation and Properties of an Insensitive Booster Explosive Based on LLM-105. Propellants Explos. Pyrotech. 2013, 38(1): 136-141.
- [18] Dickson, P. M.; Asay, B. W.; Henson, B. F.; Smilowitz, L. B. Thermal Cook-off Response of Confined PBX 9501. Proc. Royal Soc. London A: Mathematical, Physical and Engineering Sciences, The Royal Society 2004, 460(2052):3447-3455.
- [19] Hsu, P. C.; Strout, S.; Mcclelland, M.; Ellsworth, F. E. One-dimensional Time to Explosion (Thermal Sensitivity) Tests on PETN, PBX-9407, LX-10, and LX-17, Report No. LLNL-TR-681467, 2016.
- [20] Lee, K. E.; Braithwaite, P. C.; Sanderson, A. J.; Child, D. R. An Insensitive Alternative to the Pressed Explosive LX-14. NDLA 2000, Insensitive Munitions and Energetic Materials Technology Symposium 2000, 384-391.
- [21] Cook, M. D.; Stennett, C.; Haskins, P. J.; Briggs, R. I.; Wood, A. D.; Cheese, P. J. The Role of Binders in Controlling the Cook-off Violence of HMX/HTPB Compositions. Shock Compression of Condensed Matter. American Institute of Physics, 2006, 952-955.
- [22] Chaves, F. R.; Góis, J. C. Slow Cook-Off Simulation of PBX Based on RDX. Journal of Aerospace Technology and Management 2017, 9(2): 225-230.
- [23] Yan, S. H. Explosives Theory. Beijing Institute of Technology Press, 2016, pp. 168-170; ISBN 9787568225588.
- [24] Cook, M. D.; Briggs, R. I.; Stennett, C.; Haskins, P. J.; Fellows, J. Direct Observation of Cook-off Events Using a Novel Glass-windowed Vehicle and Pipe Bombs. 12th Int. Detonation Symposium, 2002, 11-16.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4a47b49-3a9c-4761-99a5-feb40cf074ab