PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Specific ion effect of chloride salts on collectorless flotation of coal

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Separation of naturally hydrophobic particles, such as coal, by flotation is known to be enhanced with the addition of salt solutions into the system. In this study, the flotation of bituminous coal in the presence of NaCl, KCl, CaCl2 and MgCl2 without use of any flotation chemicals was investigated in detailed. In addition, zeta potential and foam stability tests were performed. The results from this study showed that the flotation behaviour of coal was influenced by these dissolved salts, and determined by the specific effect of these ions, while MgCl2 and KCl solutions showed the highest and the lowest flotation performance improvements, respectively. The ash content of the products also increased with the salt concentration. This can be attributed to the entrainment of the ash minerals in the salt solutions, particularly at higher salt concentrations. Meanwhile, the froth stability tests at 1 M salt concentration also indicated that there is a correlation between the flotation recovery and stability profile of the froth. These results also clearly indicated that Na+, K+, Ca2+, Mg2+ ions have a strong ion specific effect on the flotation recovery of the coal particles, and there is an optimum salt concentration to produce a clean coal in these salt solutions.
Słowa kluczowe
Rocznik
Strony
511--524
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • Istanbul University, Mining Engineering Department, 34320, Avcilar, Istanbul
Bibliografia
  • 1. APLAN F.F., 1976, Coal Flotation. Flotation: A.M. Gaudin memorial volume. M. C. Fuerstenau. New York, AIME: 1235–1264.
  • 2. BARBIAN N., VENTURA-MEDINA E., CILLIERS, J.J., 2003, Dynamic froth stability in froth flotation, Minerals Engineering, 16(11), 1111–1116.
  • 3. BURDUKOVA E., LASKOWSKI J.S., FORBES G.R., 2009, Precipitation of dodecyl amine in KCl-NaCl saturated brine and attachment of amine particles to KCl and NaCl surfaces, International Journal of Mineral Processing, 93(1), 34–40.
  • 4. CELIK M.S., HANCER M., MILLER J.D., 2002, Flotation chemistry of boron minerals, Journal of Colloid and Interface Science, 256(1), 121–131.
  • 5. CELIK M.S., SOMASUNDARAN P., 1980, Effect of pretreatments on flotation and electrokinetic properties of coal, Colloids Surf., 1(1), 121–124.
  • 6. KHARLAMOV V.S., 1957, Possible causes of flotation of minerals with electrolytes (O возможных причинах вызывающих флотацию минералов електролитами), Bulletin Mekhanobr Oboga-shchenie Rud, 2(8), 25–30.
  • 7. CHENG F.Q., ZHANG Y.N., DU H., LIU J., NALASKOWSKI J., MILLER J.D., 2008, Surface chemistry features in the flotation of KCl, In Proceedings of the XXIV International Mineral Processing Congress, Beijing, China
  • 8. CRAIG V.S.J., NINHAM B.W., PASHLEY R.M., 1993a, Effect of electrolytes on bubble coalescence, Nature (London), 364(6435), 317–319.
  • 9. CRAIG V.S.J., NINHAM B.W., PASHLEY R.M., 1993b, The effect of electrolytes on bubble coalescence in water, Journal of Physical Chemistry, 97(39), 10192–10197.
  • 10. DU H., LIU J., OZDEMIR O., NGUYEN A.V., MILLER J.D., 2008, Molecular features of the air/carbonate solution interface, Journal of Colloid and Interface Science, 318(2), 271–277.
  • 11. GOURRAM-BADRI F., CONIL P., MORIZOT G., 1997, Measurements of selectivity due to coalescence between two mineralized bubbles and characterization of MIBC action on froth flotation, International Journal of Mineral Processing, 51(1–4), 197–208.
  • 12. HANCER M., CELIK M.S., MILLER J.D., 2001, The significance of interfacial water structure in soluble salt flotation systems, Journal of Colloid and Interface Science 235(1), 150–161.
  • 13. HARVEY P.A., NGUYEN A.V., EVANS G.M., 2002, Influence of electrical double-layer interaction on coal flotation, Journal of Colloid and Interface Science, 250(2), 337–343.
  • 14. JOHANSSON G., PUGH R.J., 1992, The influence of particle size and hydrophobicity on the stability of mineralized froths, International Journal of Mineral Processing, 34(1–2), 1–21.
  • 15. KLASSEN V.I., KOVATCHEV K.P., 1959, On mechanism of action of inorganic electrolytes in flotation of minerals (in Russian), DAN SSSR, 129, 6, 1356-1358.
  • 16. KLASSEN V.I., MOKROUSOV V.A., 1963, An Introduction to the Theory of Flotation, Butterworths, London
  • 17. KLASSEN W.I., PLAKSIN I.N., 1954, On the mechanism of action of certain chemicals and aeration of the pulp in the flotation of coals (in Russian), Proceedings of the Academy of Sciences of the USSR, Izv. Acad. Nauk SSSR (известия академии наук CCCP, OTN) 362–371.
  • 18. KURNIAWAN A.U., OZDEMIR O., NGUYEN A.V., OFORI P., FIRTH B., 2011, Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250, International Journal of Mineral Processing, 98(3–4), 137–144.
  • 19. LASKOWSKI J., ISKRA J., 1970, Role of capillary effects in bubble-particle collision in flotation, Inst. Mining Met., Trans., Sect. C, 79(March), C6–C10.
  • 20. LASKOWSKI J.S., 1994, Coal surface chemistry and its role in fine coal beneficiation and utilization, Coal Prep. (Gordon & Breach), 14(3–4), 115–131.
  • 21. LASKOWSKI J.S., 1994, Flotation of potash ores: Reagents for Better Metallurgy SME, Littleton, USA.
  • 22. LI C., SOMASUNDARAN P., 1991, Reversal of bubble charge in multivalent inorganic salt solutions-Effect of magnesium, Journal of Colloid and Interface Science, 146(1), 215–218.
  • 23. LI C., SOMASUNDARAN P., 1993, Role of electrical double layer forces and hydrophobicity in coal flotation in sodium chloride solutions, Energy Fuels, 7(2), 244–248.
  • 24. MARRUCCI G., NICODEMO L., 1967, Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes, Chemical Engineering Science, 22(9), 1257–1265.
  • 25. MILLER J.D., YALAMANCHILI M.R., KELLAR J.J., 1992, Surface charge of alkali halide particles as determined by laser-doppler electrophoresis, Langmuir, 8(5), 1464–1469.
  • 26. OZDEMIR O., CELIK M.S., NICKOLOV Z.S., MILLER J.D., 2007, Water structure and its influence on the flotation of carbonate and bicarbonate salts, Journal of Colloid and Interface Science, 314(2), 545–551.
  • 27. OZDEMIR O., JAIN A., GUPTA V., WANG X., MILLER J.D., 2010, Evaluation of flotation technology for the trona industry, Minerals Engineering, 23(1), 1–9.
  • 28. OZDEMIR O., TARAN E., HAMPTON M.A., KARAKASHEV S.I., NGUYEN A.V., 2009, Surface chemistry aspects of coal flotation in bore water, International Journal of Mineral Processing, 92(3-4), 177–183.
  • 29. PAULSON O., PUGH R.J., 1996, Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes, Langmuir, 12(20), 4808–4813.
  • 30. PUGH R.J., WEISSENBORN P., PAULSON O., 1997, Flotation in inorganic electrolytes; the relationship between recovery of hydrophobic particles, surface tension, bubble coalescence and gas solubility, International Journal of Mineral Processing, 51(1–4), 125–138.
  • 31. RATAJCZAK T., DRZYMALA J., 2003, Flotacja solna (Salt Flotation), Oficyna Wydawnicza, Wrocław University of Technology, Poland.
  • 32. SCHREITHOFER N., LASKOWSKI J.S., 2007, Investigation of KCl crystals/NaCl-KCl saturated brine interface and octadecylamine deposition with the use of AFM, Canadian Metallurgical Quarterly, 46(3), 285–294.
  • 33. YOON R.H., 1982, Flotation of coal using micro-bubbles and inorganic salts, Mining Congress Journal, 6876–6780.
  • 34. YOON R.H., SABEY J.B. (1989), Coal flotation in inorganic salt solution. Interfacial Phenomena in Coal Technology. G. D. Botsaris and Y. M. Glazman. New York, Marcel Dekker: 87–114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4a4419c-c19e-4278-9597-0a70b3d7e559
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.