PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Z-R relationship using X-Band weather radar measurements in the area of Athens

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research work focuses on the investigation of the Z-R relationship impact on weather radar rainfall estimates, through the correlation of a X-Band weather radar estimates and rain gauge measurements in the region of Attica, Greece. The methodology followed in this work is performed into two sections, where frst, a framework is applied in order to access the raw rainscanner datasets and convert them into a compatible form for comparison, since the radar measurements consist of gridded refectivity values of 2-min temporal scale, whereas the rain gauge measurements pertain to 10-min point precipi tation measurements. Secondly, a statistical analysis is performed, regarding the spatial variability of the Z-R relationship for a single event. Specifcally, four Z-R relationships are used and compared based on the correlation with the actual rain gauge measurements, for each station, and the results are then shown upon the study area. The results provide with important fndings about the spatial distribution of the optimal Z-R relationship based upon the proximity of the stations to the weather radar location, the coastline and station elevation.
Czasopismo
Rocznik
Strony
1529--1543
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, 15780 Athens, Greece
  • Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, 15780 Athens, Greece
  • National Observatory of Athens, Institute for Environmental Research and Sustainable Development, Penteli, 15236 Athens, Greece
  • Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, 15780 Athens, Greece
Bibliografia
  • 1. Alfieri L, Claps P, Laio F (2010) Time-dependent ZR relationships for estimating rainfall fields from radar measurements. Nat Hazards Earth Syst Sci 10:149
  • 2. Anagnostou EN, Anagnostou MN, Krajewski WF, Kruger A, Miriovsky BJ (2004) High-resolution rainfall estimation from X-band polarimetric radar measurements. J Hydrometeorol 5:110–128
  • 3. Anagnostou M, Nikolopoulos E, Kalogiros J, Anagnostou E, Marra F, Mair E, Bertoldi G, Tappeiner U, Borga M (2018) Advancing precipitation estimation and streamflow simulations in complex terrain with X-band dual-polarization radar observations. Remote Sens 10:1258. https://doi.org/10.3390/rs10081258
  • 4. Anagnostou MN, Kalogiros J, Anagnostou EN, Tarolli M, Papadopoulos A, Borga M (2010) Performance evaluation of high-resolution rainfall estimation by X-band dual-polarization radar for flash flood applications in mountainous basins. J Hydrol 394:4–16. https://doi.org/10.1016/j.jhydrol.2010.06.026
  • 5. Austin PM (1987) Relation between measured radar reflectivity and surface rainfall. Mon Weather Rev 115:1053–1070
  • 6. Baltas EA, Mimikou MA (2002) The use of the Joss-type disdrometer for the derivation of ZR relationships. In: 2nd European Conference on Radar in Meteorology and Hydrology (ERAD). Delft, Netherlands
  • 7. Berenguer M, Park S, Sempere-Torres D, Didszun J, Pool M, Pfeifer M (2012) RAINSCANNER@ Barcelona: an experiment to assess the hydrological value of a portable X-band radar. In: Conference Proceedings of the Seventh European Conference on Radar in Meteorology and Hydrology (ERAD)
  • 8. Bližňák V, Kašpar M, Müller M, Zacharov P (2021) Analysis and verification of reconstructed historical extreme precipitation events in an hourly resolution. Atmos Res. https://doi.org/10.1016/j.atmosres.2020.105309
  • 9. Borga M, Tonelli F, Moore RJ, Andrieu H (2002) Long-term assessment of bias adjustment in radar rainfall estimation. Water Resour Res 38:8–1
  • 10. Bournas A, Baltas E (2020) Application of a rainscanner system for quantitative precipitation estimates in the region of Attica. In: Sixth International Symposium on Green Chemistry, Sustainable Development and Circular Economy Conference on Environmental Science and Technology, Thessaloniki, Greece. p 8
  • 11. Bournas A, Baltas E (2021) Comparative analysis of rain gauge and radar precipitation estimates towards rainfall-runoff modelling in a Peri-Urban basin in Attica. Greece. Hydrology 8:29. https://doi.org/10.3390/hydrology8010029
  • 12. Brandes EA (1975) Optimizing rainfall estimates with the aid of radar. J Appl Meteorol 14:1339–1345
  • 13. Bruen M, O’Loughlin F (2014) Towards a nonlinear radar-gauge adjustment of radar via a piece-wise method. Meteorol Appl 21:675–683. https://doi.org/10.1002/met.1390
  • 14. Chapon B, Delrieu G, Gosset M, Boudevillain B (2008) Variability of rain drop size distribution and its effect on the Z–R relationship: A case study for intense Mediterranean rainfall. Atmos Res 87:52–65. https://doi.org/10.1016/j.atmosres.2007.07.003
  • 15. Chen H, Lim S, Chandrasekar V, Jang B-J (2017) Urban hydrological applications of dual-polarization x-band radar: case study in Korea. J Hydrol Eng 22:E5016001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001421
  • 16. Collier CG (2009) On the propagation of uncertainty in weather radar estimates of rainfall through hydrological models. Meteorol Appl 16:35–40. https://doi.org/10.1002/met.120
  • 17. Feloni E, Kotsifakis K, Dervos N, Giavis G, Baltas E (2017) Analysis of Joss-Waldvogel disdrometer measurements in rainfall events. In: Papadavid G, Hadjimitsis DG, Michaelides S, Ambrosia V, Themistocleous K, Schreier G (eds) Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017). SPIE, Paphos, Cyprus, p 60
  • 18. Gires A, Tchiguirinskaia I, Schertzer D, Schellart A, Berne A, Lovejoy S (2014) Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data. Atmos Res 138:125–138. https://doi.org/10.1016/j.atmosres.2013.11.008
  • 19. Hasan MM, Sharma A, Mariethoz G, Johnson F, Seed A (2016) Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework. Adv Water Res 97:205–218. https://doi.org/10.1016/j.advwatres.2016.09.011
  • 20. Holleman I (2007) Bias adjustment and long-term verification of radar-based precipitation estimates. Meteorol Appl A J Forecast, Pr Appl, Train Tech Model 14:195–203
  • 21. Joss J, Schram K, Thams JC, Waldvogel A (1970) On the Quantitative Determination of Precipitation by a Radar. Osservatorio Ticinese DellaCentrale Meteorologica Svizzera Locarno-Monti
  • 22. Joss J, Waldvogel A (1969) Raindrop size distribution and sampling size errors. J Atmos Sci 26:566–569
  • 23. Karagiannidis A, Lagouvardos K, Kotroni V (2016) The use of lightning data and meteosat infrared imagery for the nowcasting of lightning activity. Atmos Res 168:57–69. https://doi.org/10.1016/j.atmosres.2015.08.011
  • 24. Kohn M, Galanti E, Price C, Lagouvardos K, Kotroni V (2011) Nowcasting thunderstorms in the Mediterranean region using lightning data. Atmos Res 100:489–502. https://doi.org/10.1016/j.atmosres.2010.08.010
  • 25. Lagouvardos K, Kotroni V, Bezes A, Koletsis I, Kopania T, Lykoudis S, Mazarakis N, Papagiannaki K, Vougioukas S (2017) The automatic weather stations NOANN network of the national observatory of Athens: operation and database. Geosci Data J 4:4–16
  • 26. Lee GW, Zawadzki I (2005) Variability of drop size distributions: time-scale dependence of the variability and its effects on rain estimation. J Appl Meteorol Climatol 44:241–255. https://doi.org/10.1175/JAM2183.1
  • 27. Lo Conti F, Francipane A, Pumo D, Noto LV (2015) Exploring single polarization X-band weather radar potentials for local meteorological and hydrological applications. J Hydrol 531:508–522. https://doi.org/10.1016/j.jhydrol.2015.10.071
  • 28. Marra F, Morin E (2018) Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates. Atmos Res 200:126–138. https://doi.org/10.1016/j.atmosres.2017.09.020
  • 29. Marshall JS, Palmer WMK (1948) The distribution of raindrops with size. J Meteorol 5:165–166
  • 30. Michelson DB, Koistinen J (2000) Gauge-Radar network adjustment for the baltic sea experiment. Phy Chem Earth Part B: Hydrol Oceans and Atmos 25:915–920. https://doi.org/10.1016/S1464-1909(00)00125-8
  • 31. Papagiannaki K, Lagouvardos K, Kotroni V, Bezes A (2015) Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area. Natural Hazards & Earth System Sciences 15:
  • 32. Papathanasiou C, Safiolea E, Kalogiros Y, Mimikou M (2007) Comparative analysis of rain gauge and radar precipitation estimates in the Attiki area. In: Proc. 10th International Conference on Environmental Science and Technology, 5-7 September, Kos, Greece
  • 33. Park S-G, Bringi VN, Chandrasekar V, Maki M, Iwanami K (2005) Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: theoretical and empirical basis. J Atmos Ocean Technol 22:1621–1632. https://doi.org/10.1175/JTECH1803.1
  • 34. Pedersen L, Jensen NE, Madsen H (2010) Calibration of local area weather radar—Identifying significant factors affecting the calibration. Atmos Res 97:129–143. https://doi.org/10.1016/j.atmosres.2010.03.016
  • 35. Picciotti E, Marzano FS, Anagnostou EN, Kalogiros J, Fessas Y, Volpi A, Cazac V, Pace R, Cinque G, Bernardini L, De Sanctis K, Di Fabio S, Montopoli M, Anagnostou MN, Telleschi A, Dimitriou E, Stella J (2013) Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project. Nat Haz Earth Syst Sci 13:1229–1241. https://doi.org/10.5194/nhess-13-1229-2013
  • 36. Robbins GL, Collier CG (2005) Assessing error in hydrological and hydraulic model output flows. Atmos Sci Lett 6:47–53. https://doi.org/10.1002/asl.90
  • 37. Selex ES GmbH (2014) Instruction Manual, RainView Analyzer® User Guide, Release 5.40.0. Selex ES GmbH, Raiffeisenstrasse 10, Neuss-Rosellen-Germany
  • 38. Silver M, Svoray T, Karnieli A, Fredj E (2020) Improving weather radar precipitation maps: a fuzzy logic approach. Atmos Res. https://doi.org/10.1016/j.atmosres.2019.104710
  • 39. Spyrou C, Varlas G, Pappa A, Mentzafou A, Katsafados P, Papadopoulos A, Anagnostou MN, Kalogiros J (2020) Implementation of a nowcasting hydrometeorological system for studying flash flood events: the case of Mandra. Greece. Remote Sens 12:2784. https://doi.org/10.3390/rs12172784
  • 40. Uijlenhoet R, Andrieu H, Austin GL, Baltas E, Borga M, Brilly M, Cluckie ID, Creutin JD, Delrieu G, Deshons P (1999) HYDROMET Integrated Radar Experiment (HIRE): Experimental setup and first results. In: 29th International Conference on Radar Meteorology. American Meteorological Society. pp 926–930
  • 41. Zhang X, Srinivasan R (2010) GIS-based spatial precipitation estimation using next generation radar and raingauge data. Environ Model Software 25:1781–1788. https://doi.org/10.1016/j.envsoft.2010.05.012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c49aad66-3ed2-4638-bc84-18bafb0b2e1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.