PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sky-hook control and Kalman filtering in nonlinear model of tracked vehicle suspension system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The essence of the undertaken topic is application of the continuous sky-hook control strategy and the Extended Kalman Filter as the state observer in the 2S1 tracked vehicle suspension system. The half-car model of this suspension system consists of seven logarithmic spiral springs and two magnetorheological dampers which has been described by the Bingham model. The applied continuous skyhook control strategy considers nonlinear stiffness characteristic of the logarithmic spiral springs. The control is determined on estimates generated by the Extended Kalman Filter. Improve of ride comfort is verified by comparing simulation results, under the same driving conditions, of controlled and passive vehicle suspension systems.
Rocznik
Strony
222--228
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Bajkowski J. M. (2012), Design, Analysis and Performance Evaluation of the Linear, Magnetorheological Damper, Acta Mechanica et Automatica, 6, 5-9.
  • 2. Becerra V. M., Roberts P. D., Griffiths G. W. (2001), Applying the extended Kalman filter to systems described by nonlinear differentialalgebraic equations, Control Engineering Practice, 9(3), 267-281.
  • 3. Jamroziak K., Kosobudzki M., Ptak J. (2013), Assessment of the comfort of passenger transport in special purpose vehicles, Eksploatacja i Niezawodność, 15(1), 25-30.
  • 4. Julier S.J., Uhlmann J.K. (2004), Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92(3), 401-422.
  • 5. Jurkiewicz A., Nabagło T., Kowal J., Apostoł M. (2014), A new suspension system of an autonomous caterpillar platform, Journal of Theoretical and Applied Mechanics, 52(4), 857-867.
  • 6. Karnopp D., Crosby M. J., Harwood R. A. (1974), Vibration control using semi-active force generators, Journal of Engineering for Industry, 96(2), 619-626.
  • 7. Laalej H., Lang Z. Q., Sapinski B., Martynowicz P. (2012), MR damper based implementation of nonlinear damping for a pitch plane suspension system, Smart Materials and Structures, 21(4), 045006.
  • 8. Lam A. H. F., Liao W. H. (2003), Semi-active control of automotive suspension systems with magneto-rheological dampers, International Journal of Vehicle Design, 33(1-3), 50-75.
  • 9. Li H., Goodall R. M. (1999), Linear and non-linear skyhook damping control laws for active railway suspensions, Control Engineering Practice, 7(7), 843-850.
  • 10. Lindgärde O. (2002). Kalman filtering in semi-active suspension control, Proceedings of 15th IFAC World Congress,1539-1544.
  • 11. Machoczek T., Mężyk A. (2015), The multi-wheeled vehicle’s suspension control (in Polish), Przegląd Mechaniczny, 1, 19-25.
  • 12. Nabagło T., Jurkiewicz A., Apostoł M., Micek P. (2014), Simulation of 2S1 tracked vehicle model with modernized suspension system during crossing a single obstacle, Solid State Phenomena, Trans Tech Publications, 208, 140-147.
  • 13. Nabagło T., Jurkiewicz A., Kowal J. (2015), Semi-active suspension system for 2S1 tracked platform in application of improvement of the vehicle body stability, Applied Mechanics and Materials, 759, 77-90.
  • 14. Rybak P., Borkowski W., Wysocki J., Hryciów Z., Michałowski B. (2011), Model research of the light tank basing on multi-task combat platform (in Polish), Szybkobieżne Pojazdy Gąsienicowe, 2, 39-46.
  • 15. Sapiński B., Filuś J. (2003), Analysis of parametric models of MR linear damper, Journal of Theoretical and Applied Mechanics, 41(2), 215-240.
  • 16. Sapiński B., Jastrzębski Ł., Węgrzynowski M. (2011), Modelling of a self-powered vibration reduction system (in Polish), Modelowanie Inżynierskie, 10(41), 353-362.
  • 17. Simon D., Ahmadian M. (2001), Vehicle evaluation of the performance of magneto rheological dampers for heavy truck suspensions, Journal of Vibration and Acoustics, Transactions of the ASME, 123(3), 365-375.
  • 18. Snamina J., Podsiadło A., Orkisz P. (2009), Skyhook vibration control with energy regenerative system, Mechanics, 28, 124-130.
  • 19. Spencer Jr. B. F., Dyke S. J., Sain M. K., Carlson J. (1997), Phenomenological model for magnetorheological dampers, Journal of engineering mechanics, 123(3), 230-238.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c49a731c-4994-46de-a797-62a8cd0be647
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.