Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we present a numerical approach for solving Nonlinear Quadratic Volterra Integral Equations (NQVIEs) with the collocation method using Vieta-Lucas Wavelets (VLWs) and the Legendre-Gauss Quadrature Rule (LGQR). First, we prove the existence and uniqueness of the main problem under specific conditions. Then, we apply the proposed method; the NQVIEs well be reduced to a system of nonlinear algebraic equations that can be solved by Newton’s method. We also estimate the error bound and the convergence of the presented method. Several numerical examples are mentioned in order to demonstrate its effectiveness and accuracy in solving NQVIEs.
Rocznik
Tom
Strony
47--60
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Laboratory of Pure and Applied Mathematics, University of M’Sila University pole, Bordj Bou Arreridj road, M’Sila 28000, Algeria
autor
- Laboratory of Pure and Applied Mathematics, University of M’Sila University pole, Bordj Bou Arreridj road, M’Sila 28000, Algeria
autor
- Laboratory of Pure and Applied Mathematics, University of M’Sila University pole, Bordj Bou Arreridj road, M’Sila 28000, Algeria
Bibliografia
- [1] Torkaman, S., Heydari, M., & Loghmani, G.B. (2023). A combination of the quasilinearization method and linear barycentric rational interpolation to solve nonlinear multi-dimensional Volterra integral equations. Mathematics and Computers in Simulation, 208, 366-397.
- [2] Zare, F., Heydari, M., & Loghmani, G.B. (2024). Convergence analysis of an iterative scheme to solve a family of functional Volterra integral equations. Applied Mathematics and Computation, 477, 128799.
- [3] Samadi, O.R.N., & Tohidi, E. (2012). The spectral method for solving systems of Volterra integral equations. Journal of Applied Mathematics and Computing, 40, 477-497.
- [4] Abd-Elhameed, W.M., & Youssri, Y.H. (2020). Connection formulae between generalized Lucas polynomials and some Jacobi polynomials: Application to certain types of fourth-order BVPs. International Journal of Applied and Computational Mathematics, 6(2), 45.
- [5] Argyros, I.K. (1988). On a class of nonlinear integral equations arising in neutron transport. Aequationes Mathematicae, 36, 99-111.
- [6] Case, K.M., & Zweifel, P.F. (1967). Linear Transport Theory. Addison-Wesley.
- [7] Hu, S., Khavanin, M., & Zhuang, W. (1989). Integral equations arising in the kinetic theory of gases. Applicable Analysis, 34(3-4), 261-266.
- [8] Banas, J., & Martinon, A. (2004). Monotonic solutions of a quadratic integral equation of ´ Volterra type. Computers & Mathematics with Applications, 47(2-3), 271-279.
- [9] El-Sayed, A.M.A., Hashem, H.H.G., & Ziada, E.A.A. (2010). Picard and Adomian methods for quadratic integral equation. Computational & Applied Mathematics, 29(3), 447-463.
- [10] Hashem, H.H.G., & Alhejelan, A.A. (2017). Solvability of Chandrasekhar’s quadratic integral equations in Banach algebra. Applied Mathematics, 8, 846-856.
- [11] Cardinali, T., & Rubbioni, P. (2020). Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result. Discrete and Continuous Dynamical Systems, 13(7), 1947-1955.
- [12] Maleknejad, K., Torabi, P., & Mollapourasl R. (2011). Fixed point method for solving nonlinear quadratic Volterra integral equations. Computers & Mathematics with Applications, 62(6), 2555- -2566.
- [13] Bairwa, R.K., & Kumar, A. (2022). Solution of the quadratic integral equation by homotopy analysis method. Annals of Pure and Applied Mathematics, 25(1), 17-40.
- [14] Al-badrani, H., Hendi, F.A., & Shammakh, W. (2017). Numerical solutions of a quadratic integral equations by using variational iteration and homotopy perturbation methods. Journal of Mathematics Research, 9(2), 134-145.
- [15] Shiralashetti, S.C., & Lamani, L. (2021). Nonlinear quadratic integral equations using Muntz- ¨ -Legendre wavelets. Poincare Journal of Analysis and Applications, 8(1)(II), 69-89.
- [16] Avazzadeh, Z. (2012). A numerical approach for solving quadratic integral equations of Urysohn’s type using radial basis function. Journal of Applied & Computational Mathematics, 1(4), 1000116.
- [17] Ziada, E.A.A. (2013). Adomian solution of a nonlinear quadratic integral equation. Journal of the Egyptian Mathematical Society, 21(1), 52-56.
- [18] Jedrzejewski, F. (2005). Introduction aux methodes num ´ eriques ´ . 2nd ed. Springer Science & Business Media.
- [19] Idrees, S., & Saeed, U. (2022). Vieta-Lucas wavelets method for fractional linear and nonlinear delay differential equations. Engineering Computations, 39(9), 0264-4401.
- [20] Khirallah, M.Q. (2024). Vieta-Lucas spectral collocation method for solving fractional order Volterra integro-differential equations. Results in Nonlinear Analysis, 7(1), 14-23.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4939098-41e2-4dc9-869a-720c3a8012d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.