PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Waste fires in Poland and some of Their Environmental Implications – A Ten-Year Perspective

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Economic growth and development are connected with the increase in consumption. One of the side effects of progress is waste production. Sustainable development would also include proper management of waste, focusing on their recycling. However, the direct costs of recycling sometimes exceed the costs of waste storage. Therefore, waste storage in landfills is still widespread. Improper waste storage or deliberate actions can lead to waste fires. In the work, the statistics of landfill fires from the years 2012 to 2021 were analyzed. The work includes statistics of the parameters of fires reported in the reports of Polish State Fire Services. Additionally, the usage of the resources and materials for firefighting and their trends were discussed. It was shown that resources required for extinguishing waste fires were increasing in this period. The statistics are accompanied by spatiotemporal analyses of the location of fires based on Corine Land Cover which showed that approximately half of the fires are on arable land and non-continuous urban fabric while fires at dumpsites are relatively rare. The important concern is also that around 10% of very big waste fires are in forests. All these analyses lead to the assessment of some environmental impacts which are caused by waste fires.
Rocznik
Strony
147--157
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Institute of Safety Engineering, The Main School of Fire Service, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
Bibliografia
  • 1. Ali, J., Ali, M., Khan, I., Khan, A., Rafique, Z., Waseem, H. 2022. Advances in biodegradation and bioremediation of emerging contaminants in the environment, in: Biological Approaches to Controlling Pollutants. Elsevier, 121–138. https://doi.org/10.1016/B978-0-12-824316-9.00013-6
  • 2. Bihałowicz, J.S. 2021. The cross-boundary impact of the landfill fires in Poland on air quality. Sci. Business. Soc., 6, 11–14.
  • 3. Bihałowicz, J.S., Rogula-Kozłowska, W., Krasuski, A. 2021a. Contribution of landfill fires to air pollution – An assessment methodology. Waste Manag., 125, 182–191. https://doi.org/10.1016/j.wasman.2021.02.046
  • 4. Bihałowicz, J.S., Rogula-Kozłowska, W., Krasuski, A., Majder-Łopatka, M., Walczak, A., Fliszkiewicz, M., Rogula-Kopiec, P., Mach, T. 2021b. Characteristics of Particles Emitted from Waste Fires—A Construction Materials Case Study. Materials (Basel), 15, 152. https://doi.org/10.3390/ma15010152
  • 5. Bihałowicz, J.S., Rogula-Kozłowska, W., Krasuski, A., Salamonowicz, Z. 2021c. The critical factors of landfill fire impact on air quality. Environ. Res. Lett., 16, 104026. https://doi.org/10.1088/1748-9326/ac27cd
  • 6. Campos, I., Abrantes, N. 2021. Forest fires as drivers of contamination of polycyclic aromatic hydrocarbons to the terrestrial and aquatic ecosystems. Curr. Opin. Environ. Sci. Heal., 24, 100293. https://doi.org/10.1016/j.coesh.2021.100293
  • 7. Carignan, S., Clukey, K. 2020. States Must Throw Out Almost 1 Million Gallons of PFAS Foam (1). Bloom. Law.
  • 8. cena-pradu.pl, 2021. Ceny wody i odprowadzania ścieków w największych miastach Polski. [WWW Document]. URL http://www.cena-pradu.pl/woda.html (accessed 5.30.22).
  • 9. Chmielewski, J., Żeber-Dzikowska, I., Łuszczki, J., Szajner, J., Bartyzel, M., Dziechciaż, M., Chmielowiec, B., Gworek, B., Wójtowicz, B. 2020. Uwalnianie zanieczyszczeń do środowiska w wyniku pożarów składowisk odpadów i ich wpływ na zdrowie człowieka wyzwaniem dla edukacji zdrowotnej. Przem. Chem., 1, 55–60. https://doi.org/10.15199/62.2020.8.6
  • 10. CTIF. 2022. World Fire Statistics | CTIF - International Association of Fire Services for Safer Citizens through Skilled Firefighters [WWW Document]. URL https://www.ctif.org/world-fire-statistics (accessed 5.30.22).
  • 11. EEA. 2022. CORINE Land Cover - Copernicus Land Monitoring Service [WWW Document].
  • 12. EEA. 2021. CORINE Land Cover - User Manual. Copernicus L. Monit. Serv.
  • 13. EEA. 2016. EMEP/EEA air pollutant emission inventory guidebook 2016.
  • 14. EUROSTAT. 2021. Local Administrative Units (LAU) - NUTS - Nomenclature of territorial units for statistics - Eurostat [WWW Document]. URL https://ec.europa.eu/eurostat/web/nuts/local-administrative-units (accessed 5.24.21).
  • 15. Fent, K.W., Alexander, B., Roberts, J., Robertson, S., Toennis, C., Sammons, D., Bertke, S., Kerber, S., Smith, D., Horn, G. 2017. Contamination of firefighter personal protective equipment and skin and the effectiveness of decontamination procedures. J. Occup. Environ. Hyg., 14, 801–814. https://doi.org/10.1080/15459624.2017.1334904
  • 16. Fent, K.W., Eisenberg, J., Snawder, J., Sammons, D., Pleil, J.D., Stiegel, M.A., Mueller, C., Horn, G.P., Dalton, J. 2014. Systemic Exposure to PAHs and Benzene in Firefighters Suppressing Controlled Structure Fires. Ann. Occup. Hyg., 58, 830–845. https://doi.org/10.1093/annhyg/meu036
  • 17. Futures, R. 2010. Summary Report – Material Bulk Densities.
  • 18. Gaines, L., Vyas, A., Anderson, J. 2006. Paper No. 06 -2567 Estimation of Fuel Use by Idling Commercial Trucks.
  • 19. Glasser, G.J., Winter, R.F. 1961. Critical Values of the Coefficient of Rank Correlation for Testing the Hypothesis of Independence. Biometrika, 48, 444. https://doi.org/10.2307/2332767
  • 20. Hantson, S., Andela, N., Goulden, M.L., Randerson, J.T. 2022. Human-ignited fires result in more extreme fire behavior and ecosystem impacts. Nat. Commun., 13, 2717. https://doi.org/10.1038/s41467-022-30030-2
  • 21. Ibrahim, M.A., Lönnermark, A., Hogland, W. 2022. Safety at waste and recycling industry: Detection and mitigation of waste fire accidents. Waste Manag., 141, 271–281. https://doi.org/https://doi.org/10.1016/j.wasman.2022.02.004
  • 22. Isaacson, K.P., Proctor, C.R., Wang, Q.E., Edwards, E.Y., Noh, Y., Shah, A.D., Whelton, A.J. 2021. Drinking water contamination from the thermal degradation of plastics: implications for wildfire and structure fire response. Environ. Sci. Water Res. Technol., 7, 274–284. https://doi.org/10.1039/D0EW00836B
  • 23. ISO. 1987. ISO 8421-1:1987 Fire protection — Vocabulary — Part 1: General terms and phenomena of fire.
  • 24. Jakubiec, J. 2018. Skuteczność gaśnicza i bezpieczeństwo stosowania wybranych zwilżaczy− ocena skuteczności gaśniczej i zdolności zwilżających. Zesz. Nauk. SGSP/Szkoła Główna Służby Pożarniczej, 65, 27–35.
  • 25. Kärrman, A., Elgh-Dalgren, K., Lafossas, C., Møskeland, T. 2011. Environmental levels and distribution of structural isomers of perfluoroalkyl acids after aqueous fire-fighting foam (AFFF) contamination. Environ. Chem., 8, 372–380.
  • 26. KG PSP. 2019. Zasady Ewidencjonowania Zdarzeń w Systemie Wspomagania Decyzji Państwowej Straży Pożarnej. Komenda Główna Państwowej Straży Pożarnej.
  • 27. Kiely, L., Spracklen, D. V, Arnold, S.R., Papargyropoulou, E., Conibear, L., Wiedinmyer, C., Knote, C., Adrianto, H.A. 2021. Assessing costs of Indonesian fires and the benefits of restoring peatland. Nat. Commun. 12, 7044. https://doi.org/10.1038/s41467-021-27353-x
  • 28. Marlier, M.E., DeFries, R.S., Kim, P.S., Koplitz, S.N., Jacob, D.J., Mickley, L.J., Myers, S.S., 2015. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environ. Res. Lett., 10, 85005.
  • 29. Martin, D., Tomida, M., Meacham, B. 2016. Environmental impact of fire. Fire Sci. Rev., 5, 5. https://doi.org/10.1186/s40038-016-0014-1
  • 30. Milne, M., Clayton, H., Dovers, S., Cary, G.J. 2014. Evaluating benefits and costs of wildland fires: critical review and future applications. Environ. Hazards, 13, 114–132. https://doi.org/10.1080/17477891.2014.888987
  • 31. Mizerski, A., Sobolewski, M. 2007. Rozszerzona charakterystyka środków pianotwórczych stosowanych w pożarnictwie i ratownictwie chemicznym. Zesz. Nauk. SGSP / Szk. Główna Służby Pożarniczej Nr 35, 33–52.
  • 32. Molina Martínez, J.R., Herrera Machuca, M., Zamora Díaz, R., Rodríguez y Silva, F., González-Cabán, A. 2011. Economic losses to Iberian swine production from forest fires. For. Policy Econ., 13, 614–621. https://doi.org/10.1016/j.forpol.2011.07.011
  • 33. Nyamadzawo, G., Gwenzi, W., Kanda, A., Kundhlande, A., Masona, C. 2013. Understanding the causes, socio-economic and environmental impacts, and management of veld fires in tropical Zimbabwe. Fire Sci. Rev., 2, 2. https://doi.org/10.1186/2193-0414-2-2
  • 34. O’Hara, K.C., Ranches, J., Roche, L.M., Schohr, T.K., Busch, R.C., Maier, G.U. 2021. Impacts from Wildfires on Livestock Health and Production: Producer Perspectives. Animals, 11, 3230. https://doi.org/10.3390/ani11113230
  • 35. Otrachshenko, V., Nunes, L.C. 2022. Fire takes no vacation: Impact of fires on tourism. Environ. Dev. Econ., 27, 86–101.
  • 36. Pansuk, J., Junpen, A., Garivait, S. 2018. Assessment of Air Pollution from Household Solid Waste Open Burning in Thailand. Sustainability, 10, 2553. https://doi.org/10.3390/su10072553
  • 37. PIG, 2005. information newsletter 1–12.
  • 38. Pofit-Szczepańska, M. 1994. Wybrane zagadnienia z chemii ogólnej, fizykochemii spalania i rozwoju pożarów. SA PSP, Kraków.
  • 39. QGIS Development Team, 2021. QGIS Geographic Information System. Open Source Geospatial Foundation Project. ver 3.22 Białowieża.
  • 40. Ré, A., Campos, I., Keizer, J.J., Gonçalves, F.J.M., Pereira, J.L., Abrantes, N. 2021. Effects of post- fire contamination in sediment-dwelling species of riverine systems. Sci. Total Environ., 771, 144813. https://doi.org/10.1016/j.scitotenv.2020.144813
  • 41. Rogula-Kozłowska, W., Bralewska, K., Jureczko, I. 2020a. BTEXS Concentrations and Exposure Assessment in a Fire Station. Atmosphere (Basel), 11, 470. https://doi.org/10.3390/atmos11050470
  • 42. Rogula-Kozłowska, W., Bralewska, K., Rogula-Kopiec, P., Makowski, R., Majder-Łopatka, M., Łukawski, A., Brandyk, A., Majewski, G. 2020b. Respirable particles and polycyclic aromatic hydrocarbons at two Polish fire stations. Build. Environ., 184, 107255. https://doi.org/10.1016/j.buildenv.2020.107255
  • 43. Solomon, G.M., Hurley, S., Carpenter, C., Young, T.M., English, P., Reynolds, P. 2021. Fire and Water: Assessing Drinking Water Contamination After a Major Wildfire. ACS ES&T Water, 1, 1878–1886. https://doi.org/10.1021/acsestwater.1c00129
  • 44. Spearman, C. 1904. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 15, 72–101. https://doi.org/10.2307/1412159
  • 45. Teixeira, J., Souza, L., Le Stradic, S., Fidelis, A. 2022. Fire promotes functional plant diversity and modifies soil carbon dynamics in tropical savanna. Sci. Total Environ., 812, 152317. https://doi.org/10.1016/j.scitotenv.2021.152317
  • 46. Tureková, I., Balog, K. 2011. The environmental impacts of fire-fighting foams. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol., 18, 111–120.
  • 47. US EPA. 1995. AP-42: Compilation of Air Pollutant Emission Factors.
  • 48. Węsierski, T., Eszer, O. 2018. Determining the Components of Foaming Agents That Can Have a Decisive Impact On Reducing the Absorption Proprieties of Rigid Polyurethane Foam Waste in Relation to Post-Foaming Waste. Bezpieczeństwo i Tech. Pożarnicza 50–62. https://doi.org/10.12845/bitp.50.2.2018.4
  • 49. Williams, J. 2013. Exploring the onset of high-impact mega-fires through a forest land management prism. For. Ecol. Manage., 294, 4–10.
  • 50. WorldPop, Bondarenko, M. 2020. Individual Countries 1 km Population Density (2000-2020).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c48d84d9-8ce7-41d8-8158-f479524aaf7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.