PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Si/ZnO nanorods with Ag nanoparticles/AZO heterostructures in PV applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our studies focus on test structures for photovoltaic applications based on zinc oxide nanorods grown using a low-temperature hydrothermal method on a p-type silicon substrate. The nanorods were covered with silver nanoparticles of two diameters – 20–30 nm and 50–60 nm – using a sputtering method. Scanning electron microscopy (SEM) micrographs showed that the deposited nanoparticles had the same diameters. The densities of the nanorods were obtained by means of atomic force microscope (AFM) images. SEM images and Raman spectroscopy confirmed the hexagonal wurtzite structure of the nanorods. Photoluminescence measurements proved the good quality of the samples. Afterwards an atomic layer deposition (ALD) method was used to grow ZnO:Al (AZO) layer on top of the nanorods as a transparent electrode and ohmic Au contacts were deposited onto the silicon substrate. For the solar cells prepared in that manner the current-voltage (I-V) characteristics before and after the illumination were measured and their basic performance parameters were determined. It was found that the spectral characteristics of a quantum efficiency exhibit an increase for short wavelengths and this behavior has been linked with the plasmonic effect.
Słowa kluczowe
Rocznik
Strony
529--533
Opis fizyczny
Bibliogr. 18 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Quantum Technologies, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
  • Department of Quantum Technologies, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
autor
  • Department of Quantum Technologies, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
autor
  • Department of Quantum Technologies, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
  • Institute of Physics, Polish Academy of Sciences, 32/46 Lotnikow Av., 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, 32/46 Lotnikow Av., 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, 32/46 Lotnikow Av., 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, 32/46 Lotnikow Av., 02-668 Warsaw, Poland
autor
  • Institute of Physics, Polish Academy of Sciences, 32/46 Lotnikow Av., 02-668 Warsaw, Poland
  • Department of Mathematics and Natural Sciences College of Science, Cardinal Stefan Wyszynski University, 5 Dewajtis St., 01-815 Warsaw, Poland
autor
  • Department of Electronic Engineering and Green Technology Research Center, Chang-Gung University, Taoyuan, Taiwan, Province of China
Bibliografia
  • [1] A. Janotti and C.G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor”, Reports On Progress In Physics, 72(12), 126501 (2009).
  • [2] F. Oba, M. Choi, A. Togo and I. Tanaka, “Point defects in ZnO: an approach from first principles”, Science And Technology Of Advanced Materials, 12(3), 034302 (2011).
  • [3] A. Janotti and C.G. Van De Walle, “Native point defects in ZnO”, Physical Review B: Condensed Matter and Materials Physics, 76(16), 165202 (2007).
  • [4] R. Pietruszka, G. Luka, K. Kopalko, E. Zielony, P. Bieganski, E. Placzek-Popko and M. Godlewski, “Photovoltaic and photoelectrical response of n-ZnO/p-Si heterostructures with ZnO films grown by an atomic layer deposition method”, Materials Science in Semiconductor Processing, 25, 190–196 (2014).
  • [5] S. Sharma and C. Periasamy, “A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique”, Superlattices and Microstructures, 73, 12–21 (2014).
  • [6] E. Guziewicz, I.A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wójcik, S. Yatsunenko, E. Łusakowska, W. Paszkowicz and M. Guziewicz, “Extremely low temperature growth of ZnO by atomic layer deposition”, Journal of Applied Physics, 03, 1033515 (2008).
  • [7] R. Pietruszka, B.S. Witkowski, G. Luka, L. Wachnicki, S. Gieraltowska, K. Kopalko, M. Godlewski, E. Zielony, P. Bieganski and E. Placzek-Popko, “Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures”, Beilstein Journal of Nanotechnology, 5, 173–179 (2014).
  • [8] H.A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices”, Nature Materials, 9, 205–213 (2010).
  • [9] K. Wu, Y. Lu, H. He, J. Huang, B. Zhao and Z. Ye, “Enhanced near band edge emission of ZnO via surface plasmon resonance of aluminum nanoparticles”, Journal of Applied Physics, 110, 023510 (2011).
  • [10] J.H. Parker, D.W. Feldman and M. Ashkin, “Raman scattering by silicon and germanium”, Physical Review, 155, 712–714 (1967).
  • [11] R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang and M.J. Callahan, “Temperature dependence of Raman scattering in ZnO”, Physical Review B: Condensed Matter and Materials Physics, 75, 165202 (2007).
  • [12] S.M. Soosen, J. Koshy, A. Chandran and K.C. George, “Optical phonon confinement in ZnO nanorods and nanotubes”, Indian Journal of Pure and Applied Physics, 48, 703–708 (2010).
  • [13] R. Ruppin, “Thermal fluctuations and Raman scattering in small spherical crystals”, Journal of Physics C: Solid State Physics, 8, 1969–1978 (1975).
  • [14] B. Jusserand and M. Cardona, “Raman-spectroscopy of vibrations in superlattices”, Topics in Applied Physics, 66, 49–152 (1989).
  • [15] I.S. Yahia, F. Yakuphanoglu, S. Chusnutdinow, T. Wojtowicz and G. Karczewski, “Photovoltaic characterization of n - CdTe / p-CdMnTe/GaAs diluted magnetic diode”, Current Applied Physics, 13, 537–543 (2013).
  • [16] L.C. Chen and C.N. Pan, “Photoresponsivity enhancement of ZnO/Si photodiodes through use of an ultrathin oxide interlayer”, European Physical Journal: Applied Physics, 44, 43–46 (2008).
  • [17] E. Placzek-Popko, K. Gwozdz, Z. Gumienny, E. Zielony, R. Pietruszka, B.S. Witkowski, Ł. Wachnicki, S. Gieraltowska, M. Godlewski, W. Jacak and L.-B. Chang, “Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells”, Journal of Applied Physics, 117, 193101 (2015).
  • [18] W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency”, Journal of Physics D: Applied Physics, 44, 055301 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4875f67-739a-4b0f-af93-69dabd135873
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.