PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modele receptorów narządu przedsionkowego człowieka oraz zjawisk fizjologicznych towarzyszących ich pobudzeniom

Autorzy
Identyfikatory
Warianty tytułu
EN
Models of the human vestibular system receptors and physiological phenomena accompanying their stimulation
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono dotychczas niepublikowane w polskim piśmiennictwie metody modelowania fizycznego i matematycznego receptorów narządu przedsionkowego człowieka. Charakterystykę modeli poprzedzono opisem budowy i zasady działania receptorów przyspieszeń kątowych i liniowych tego narządu. Przedstawiono sposoby modelowania kanałów półkolistych, narządów otolitowych oraz zjawisk fizjologicznych towarzyszących pobudzaniom narządu przedsionkowego. Opisano stosowane podejścia przy wyznaczaniu wartości stałych czasowych modelu. Na podstawie charakterystyk częstotliwościowych przeprowadzono analizę właściwości dynamicznych modeli receptorów, wskazując spośród nich te, których odpowiedź najdokładniej odwzorowuje fizjologię narządu. Prezentowane modele matematyczne mogą posłużyć do badania możliwości wystąpienia u człowieka w ruchu lądowym, powietrznym i morskim zaburzeń percepcji postaw i ruchu, powodujących zaburzenia równowagi oraz chorobę lokomocyjną.
EN
The article presents previously unpublished in Polish literature methods of physical and mathematical modeling of the human vestibular system receptors. The characteristics of the models preceded by a description of the anatomy and function of receptors of angular and linear accelerations. They were presented ways of modeling the semicircular canals, otolith organs and physiological phenomena accompanying vestibular system stimulation. Describes the approach used in determining the value of the time constants of the model. It described the approach used in determining the value of the time constants of the model. Described the approach used in determining the value of the model’s time constants. Based on the frequency characteristics it has been performed analysis of the dynamic properties of the model receptor, indicating among them, those which best matches the response of the organ physiology. Presented mathematical models can be used to study the possibility of the human in motion on land, in air and sea disturbance of attitudes perception and motion, causing imbalance and motion sickness.
Rocznik
Strony
83--104
Opis fizyczny
Bibliogr. 77 poz.
Twórcy
autor
  • Zakład Szkolenia i Treningu Lotniczo-Lekarskiego, Wojskowy Instytut Medycyny Lotniczej
Bibliografia
  • 1. Rajguru S.M, Rabbitt R.D.: Afferent responses during experimentally induced semicircular canalithiasis. „J Neurophysiol” 2007, Vol. 97, No. 3, p. 2355–2363.
  • 2. Obrist D., Hegemann S., Kronenberg D., Hauselmann O., Rosgen T.: In vitro model of a semicircular canal: Design and validation of the model and its use for the study of canalithiasis. „J Biomech”. 2010, Vol. 43, No. 6, p. 1208–1214.
  • 3. Anatomia ucha wewnętrznego człowieka. http:\\www.silentium.com.plindex.phpartykul=8. Dostęp: marzec 2016.
  • 4. Silverthorn D. U.: Human physiology: an integrated approach. 5th ed. Pearson 2007. ISBN 13:9780321559395.
  • 5. Curthoys I.S., Markham C.H, Curthoys E.J.: Semicircular duct and ampulla dimensions in cat, guinea pig and man. „J Morphol”. 1977, Vol. 151, No. 1, p. 17–34.
  • 6. Curthoys I.S., Oman C.M.: Dimensions of the horizontal semicircular duct, ampulla and utricle in the human. „Acta Otolaryngol”. 1987, Vol. 103, No. 5, p. 254–261.
  • 7. Bradshaw A.P., Curthoys I.S., Todd M.J., Magnussen J.S., Taubman D.S., Aw S.T, et al.: A mathematical model of human semicircular canal geometry: a new basis for interpreting vestibular physiology. „JARO - J Assoc Res Otolaryngol”. 2010, Vol. 11, No. 2, p. 145–159.
  • 8. Gualtierotti T.: The vestibular system: function and morphology. Mila, Włochy: Springer-Verlag; 1981. ISBN 9781461259046.. 552 p.
  • 9. Della Santina C.C., Potyagaylo V., Migliaccio A.A., Minor L.B., Carey J.P.: Orientation of human semicircular canals measured by three-dimensional multiplanar CT reconstruction. „J Assoc Res Otolaryngol”. 2005, Vol. 6, No. 3, p. 191–206.
  • 10. Kowalczuk K.: Wartość diagnostyczna parametrów fizjologicznych podczas wywoływanej dezorientacji przestrzennej. Warszawa: Wojskowy Instytut Medycyny Lotniczej, 2003.
  • 11. Stanfield C.L: Principles of human physiology. 4th.ed. Pearson 2010. ISBN 9780321652874.
  • 12. Rabbitt R.D., Damiano E.R., Grant J.W.: Biomechanics of the semicircular canals and otolith organs. In: The Vestibbular System. Springer Handbook of Auditory Research 2004, p. 153–201. ISBN 9780387215679.
  • 13. Van Buskirk W.C., Watts R.G., Liu Y.K.: Fluid mechanics of the semicircural canals. „J Fluid Mech”. 1976, Vol. 78, No. 1, p. 87–98.
  • 14. Steinhausen W.: Ueber die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts. „Pflugers Arch Gesamte Physiol Menschen Tiere”. 1933, Vol. 232, p. 500–512.
  • 15. Van Egmond A.A.J., Groen J.J., Jongkees L.B.W.: The mechanics of the semicircular canal. „J Physiol”. 1949, Vol. 110, No. 1-2, p. 1–17.
  • 16. Groen J.J., Lowenstein O., Vendrik A.J.H: The mechanical analysis of the responses from the end-organs of the horizontal semicircular canal in the isolated elasmobranch labyrinth. „J Physiol”. 1952, Vol. 117, No. 3, p. 329–346.
  • 17. Steer R.W.: The ifluence of angular and linear acceleration and thermal stimulation on the human semicircular canals. Massachusetts Institute of Technology 1967.
  • 18. Oman C.M., Marcus E.N., Curthoys I.S.: The influence of semicircular canal morphology on endolymph flow dynamics: an anatomically descriptive mathematical model. „Acta Otolaryngol” 1987, Vol. 103, No. 1-2, p. 1– 13.
  • 19. Rabbitt R.D., Damiano E.R.: A hydroelastic model of macromechanics in the endolymphatic vestibular canal. „J Fluid Mech”. 1992, Vol. 238, No. 1, p. 337–369.
  • 20. Damiano E.R., Rabbitt R.D.: A singular perturbation model of fluid-dynamics in the vestibular semicircular canal and apulla. „J Fluid Mech”. 1996, Vol. 307, p. 333–372.
  • 21. Rabbitt R.D.: Directional coding of three-dimensional movements by the vestibular semicircular canals. „Biol Cybern” 1999, Vol. 80, No. 6, p.417–431.
  • 22. Mingyu X.U., Wenchang T: Problem of the fluid dynamics in semicicrular canals. „Sci China”. 2000, Vol. 43, No. 5, p. 517–526.
  • 23. Muller M., Verhagen J.H.G.: A new quantitative model of total endolymph flow in the system of semicircular ducts. „J Theor Biol”. 1988, Vol. 134, No. 4, p. 473–501.
  • 24. Muller M., Verhagen J.H.G.: Optimisation of the mechanical performance of a two-duct semicircular duct system. Part 3: The positioning of the ducts in the head. „J Theor Biol”. 2002, Vol. 216, No. 4, p. 443–459.
  • 25. Muller M., Verhagen J.H.G.: Optimization of the mechanical performance of a two-duct semicircular duct system. Part 2: Excitation of endolymph movements. „J Theor Biol”. 2002, Vol. 216, No. 4, p. 425–442.
  • 26. Muller M., Verhagen J.H.G.: Optimization of the mechanical performance of a two-duct semicircular duct system Part 1: Dynamics and duct dimensions. „J Theor Biol”. 2002, Vol. 216, p. 409–424.
  • 27. Ifediba M.A., Rajguru S.M., Hullar T.E., Rabbitt R.D.: The role of 3-canals biomechanics in angular motion transduction by the human vestibular labyrinth. „Ann Biomed Eng”. 2007, Vol. 35, No. 7, p. 1247–1263.
  • 28. Obrist D.: Fluidmechanics of semicircular canals - revisited. „Zeitschrift fur Angew Math und Phys”. 2008, Vol. 59, No. 3, p. 475–97.
  • 29. Grossman G.E., Leigh R.J., Abel L.A., Lanska D.J, Thurston S.E.: Frequency and velocity of rotational head perturbations during locomotion. „Exp Brain Res”. 1988, Vol. ;70, No. 3, p. 470–476.
  • 30. Mayne R.: A systems concept of the vestibular organs. „Vestib Syst Part 2 Psychophys Appl Asp Gen Interpret”. 1974, Vol. 6, No. 2, p. 493–580.
  • 31. Selva P.: Modélisation du système vestibulaire et modèles non-linéaires de perception de l’orientation spatiale. Université de Toulouse 2009.
  • 32. Rabbitt R.D., Breneman K.D., King C., Yamauchi A.M., Boyle R.D, Highstein S.M.: Dynamic displacement of normal and detached semicircular canal cupula. „JARO - J Assoc Res Otolaryngol”. 2009, Vol. 10, p. 497– 509.
  • 33. Van Buskirk W.C.: The effect of the utricle on fluid flow in the semicircular canals. „Ann Biomed Eng”. 1977, Vol. 5, No. 1, p. 1–11.
  • 34. Goldberg J.M., Fernandez C.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III Variations among units in their discharge properties. „J Neurophysiol”. 1971, Vol. 34, p. 676–684.
  • 35. Squires T.M., Weidman M.S., Hain T.C., Stone H.A.: A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV. „J Biomech”. 2004, Vol. 37, p. 1137–1146.
  • 36. Ghanem T.A, Rabbitt R.D., Tresco P.A.: Three-dimensional reconstruction of the membranous vestibular labyrinth in the toadfish, Opsanus tau. „Hear Res”. 1998, Vol. 124, No. 1-2, p. 27–43.
  • 37. Mayne R.: The audiogyral illusion and the mechanism of spatial representation. „Bull Math Biophisics”. 1952, Vol. 14, p. 27–34.
  • 38. Young L.R., Oman C. M.: Model for vestibular adaptation to horizontal rotation. „Aerosp Med”. 1969, Vol. 40, No. 10, p. 1076–1080.
  • 39. Fernandez C., Goldberg J.M.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. „J Neurophysiol”. 1971, Vol. 34, No. 4, p. 661–675.
  • 40. Schmid R.M., Stefanelli M., Mira E.: Mathematical modelling: a contribution to clinical vestibular analysis. „Acta Otolaryngol”. 1971, Vol. 72, No. 4, p. 292–302.
  • 41. Ormsby C.C.: Model of human dynamic orientation. Massachusetts Institute of Technology 1974.
  • 42. Meiry J.L.: The vestibular system and human dynamic space orientation. Massachusetts Institute of Technology 1965.
  • 43. Young L.R., Meiry J.L.: A revised dynamic otolith model. „Aviat Sp Environ Med”. 1968, Vol. 39, p. 606–608.
  • 44. Zacharias G.L.: Motion sensation dependence on visual and vestibular cues. Massachusetts Institute of Technology 1977.
  • 45. Grant J.W., Best W.A.: Mechanics of the otolith organ-dynamic response. „Ann Biomed Eng”. 1986, Vol. 14, No. 3, p. 241–256.
  • 46. Grant J.W., Best W.A.: Otolith-organ mechanics: lumped parameter model and dynamic response. „Aviat Sp Environ Med”. 1987, Vol. 58, No. 10, p. 970–976.
  • 47. Grant J.W., Cotton J.R.: A model for otolith dynamic response with a viscoelastic gel layer. „J Vestib ResEquilib Orientat”. 1990, Vol.1, No. 2, p. 139–151.
  • 48. De Vries H.: The mechanics of the labyrinth otoliths. „Acta Otolaryngol”. 1950, Vol. 38, No. 3, p. 262–273.
  • 49. Fernandez C., Goldberg J.M.: Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. " J Neurophysiol" 1976, Vol. 39, No. 5, p. 996-1008.
  • 50. Hosman R.J.A.W.: Pilot’s perception and control of aircraft motions. Delft University of Technology 1996.
  • 51. Telban R.J., Cardullo F.M.: Motion cueing algorithm development: human-centered linear and nonlinear approaches. NASA TechReport CR-2005-213747. Binghamton, New York; 2005.
  • 52. Bronzino J.D.: Biomedical engineering handbook. 3th ed. 2006. ISBN 9780849321214.
  • 53. Newman M.C., Lawson B.D., Rupert A.H., Mcgrath B.J.: The role of perceptual modeling in the understanding of spatial disorientation during flight and ground-based simulator training. In: AIAA Modeling and Simulation Technologies Conference. Minneapolis, MN; 2012. p. 1–14.
  • 54. Nashner L.M.: Sensory feedback in human postural control. Massachusetts Institute of the Technology 1970.
  • 55. Nashner L.M.: A model describing vestibular detection of body sway motion. „Acta Otolaryngol”. 1971, Vol. 72, No. 6, p. 429–436.
  • 56. Benson A.J.: Interactions between semicircular canals and gravireceptors. „Recent Adv Aerosp Med”. 1970, p. 249–261.
  • 57. Bonnie R. S.: The GALE enycyclopedia of psychology. 2nd. ed. Gale Group; 2001. ISBN 0787647861.
  • 58. Akbari B.: Linear self-motion thresholds on 6DOF platforms. 2014, p. 1–21.
  • 59. Akbari B.: Investigations into self motion thresholds using a Stewart platform. Master of Applied Science Thesis. McMaster University, Ontario, Canada, 2014.
  • 60. Venkatesan R.H.: Multisensory models for human spatial orientation including threshold effects. Massachusetts Institute of Technology 2010.
  • 61. Gillingham K.K., Previc F.H.: Spatial orientation in flight. Report No. AL-TR-1993-0022. Brooks Air Force Base, TX, 1993.
  • 62. Gurovskiy N.N., Bryanov I.I., Yegorov A.D.: Changes in the vestibular function during space flight. „Acta Astronaut”. 1975, Vol. 2, No. 2, p. 207–216.
  • 63. Oman C.M.: Influence of adaptation on the human semicircular canals and the role of subjective angular velocity cues in spatial orientation. Massachusetts Institute of Technology 1968.
  • 64. Raphan T., Matsuo V., Cohen B.: Velocity storage in the vestibulo-ocular reflex arc (VOR). „Exp Brain Res” 1979, Vol. 35, No. 2, p. 229–248.
  • 65. Robinson D.A.: Linear addition of optokinetic and vestibular signals in the vestibular nucleus. „Exp Brain Res” 1977, Vol. 30, No. 2-3, p. 447–450.
  • 66. Spenny C.H., Liebst B.S.: Assessment of motion devices used for spatial orientation research and training. In: RTO HFM Symposium on “Spatial Disorientation in Military Vehicles: Causes, Consequences and Cures.” La Coruña, Spain: RTO-MP-086; 2002. p. 15–17.
  • 67. Wang L.J., Sun H.Y, Pei J.C., Liu X.H., Tong B.L.: Effects of some physical training on vestibular function. „Space Med Med Eng (Beijing)” 2000, Vol.13, No. 6, p. 405–409.
  • 68. Van Buskirk W.C.: Vestibular mechanics. In: Handbook of Bioengineering.. McGraw Hill; 1987. p. 31.1–31.17.
  • 69. Obrist D.: Fluid mechanics of the inner ear. University Hospital Zurich and the Institute for Biomechanics ETH Zurich 2011.
  • 70. Hosman R.J.A.W., van Der Vaart J.C.: Vestibular models and thresholds of motion perception: results of tests in a flight simulator. Report No. LR-265, Delft University of Technology 1978.
  • 71. Young L.R.: Perception of the body in space: mechanisms. In: Handbook of Physiology, Sec 1: The nervous system, v III: Sensory processes, pt 2. American Physiological Society; 1984. p. 1023-1066.
  • 72. Zacharias G.L.: Motion cue models for pilot-vehicle analysis. Wright Patterson Air Base, Ohio, 1978.
  • 73. Telban R.J., Wu W., Cardullo F.M., Houck J.A.: Motion cueing algorithm development: initial investigation and redesign of the algorithms. NASA /CR- 2000-209863, 2000.
  • 74. Reid L.D., Nahon M.A.: Flight simulation motion-base drive algorithimns: Part 1: Developing and Testing the Equations. 1985.
  • 75. Gastaldi L., Sorli S., Pastorelli M.: Vestibular apparatus: dynamic model of the semicircular canals. In: "Modelling in Medecine and Biology" 2011, p. 223-234.
  • 76. Grant J.W., Huang C.C., Cotton J.R:: Theoretical mechanical frequency response of the otolithic organs. „J Vestib Res”. 1994, Vol. 4, No. 2, p. 137–151.
  • 77. Lessard S.C., Rodriguez-Gareia A.C., Wong W.C., Im J.J., Schmidt F.G.: Characterization of slow and fast nystagmus. Vol. 1.The effects of brief mindfulness intervention on acute pain experience: an examination of individual difference. College Station, TX 1991.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c482122c-3378-41f9-a1c0-e28dd775a845
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.