Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Skin melanoma is a potentially life-threatening cancer. Once it has metastasized, it may cause severe disability and death. Therefore, early diagnosis is important to improve the conditions and outcomes for patients. The disease can be diagnosed based on Digital-Dermoscopy (DD) images. In this study, we propose an original and novel Automated Skin-Melanoma Detection (ASMD) system with Melanoma-Index (MI). The system incorporates image pre-processing, Bi-dimensional Empirical Mode Decomposition (BEMD), image texture enhancement, entropy and energy feature mining, as well as binary classification. The system design has been guided by feature ranking, with Student’s t-test and other statistical methods used for quality assessment. The proposed ASMD was employed to examine 600 benign and 600 DD malignant images from benchmark databases. Our classification performance assessment indicates that the combination of Support Vector Machine (SVM) and Radial Basis Function (RBF) offers a classification accuracy of greater than 97.50%. Motivated by these classification results, we also formulated a clinically relevant MI using the dominant entropy features. Our proposed index can assist dermatologists to track multiple information-bearing features, thereby increasing the confidence with which a diagnosis is given.
Wydawca
Czasopismo
Rocznik
Tom
Strony
997--1012
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wykr.
Twórcy
autor
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design S487372, Singapore
autor
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore
autor
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore
autor
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
autor
- Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom
autor
- School of Business, University of Southern Queensland, Springfield, Australia
autor
- Department of Medicine, Columbia University Medical Center, New York, USA
autor
- Department of Electronics and Instrumentation, St. Joseph’s College of Engineering, Chennai, India
autor
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, Japan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
Bibliografia
- [1] Ward WH, Farma JM, Cutaneous melanoma: Etiology and therapy [internet] Codon Publications.
- [2] World Health Organization (WHO), Radiation: Ultraviolet (UV) radiation and skin cancer, Accessed: 2020-12-11. https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv)-radiation-and-skin-cancer.
- [3] National Cancer Institute Surveillance, Epidemiology, and End Results Program, Melanoma of the Skin-Cancer Stat Facts, Accessed: 2020-12-11. https://seer.cancer.gov/statfacts/html/melan.html.
- [4] Herbert A, Koo MM, Barclay ME, Greenberg DC, Abel GA, Levell NJ, Lyratzopoulos G, Stage–specific incidence trends of melanoma in an english region, 1996–2015: Longitudinal analyses of population-based data, Melanoma research, 2020, Europe PMC Funders.
- [5] American Academy of Dermatology (AAD), Accessed: 2020-12-11. https://www.aad.org/public/diseases/skin-cancer/prevent/how.
- [6] Thomas L, Puig S, Dermoscopy, digital dermoscopy and other diagnostic tools in the early detection of melanoma and follow-up of high-risk skin cancer patients, Acta dermato-venereologica 2017;97.
- [7] Janda M, Cust AE, Neale RE, Aitken JF, Baade PD, Green AC, Khosrotehrani K, Mar V, Soyer HP, Whiteman DC. Early detection of melanoma: a consensus report from the australian skin and skin cancer research centre melanoma screening summit. Australian and New Zealand J Public Health 2020;44(2):111–5.
- [8] Babajanyan S, Koonin EV, Cheong KH. Can environmental manipulation help suppress cancer? non-linear competition among tumor cells in periodically changing conditions. Adv Sci 2020;7(16):2000340.
- [9] Cesati M, Scatozza F, D’Arcangelo D, Antonini-Cappellini GC, Rossi S, Tabolacci C, et al. Investigating serum and tissue expression identified a cytokine/chemokine signature as a highly effective melanoma marker. Cancers 2020;12(12):3680.
- [10] Hamamoto R, Suvarna K, Yamada M, Kobayashi K, Shinkai N, Miyake M, et al. Application of artificial intelligence technology in oncology: Towards the establishment of precision medicine. Cancers 2020;12(12):3532.
- [11] Dey N, Rajinikanth V, Ashour AS, Tavares JMR. Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 2018;10(2):51.
- [12] Rajinikanth V, Madhavaraja N, Satapathy SC, Fernandes SL. Otsu’s multi-thresholding and active contour snake model to segment dermoscopy images. J Med Imaging Health Inform 2017;7(8):1837–40.
- [13] Tschandl P, Rinner C, Apalla Z, Argenziano G, Codella N, Halpern A, et al. Human–computer collaboration for skin cancer recognition. Nat Med 2020;26(8):1229–34.
- [14] Amelard R, Glaister J, Wong A, Clausi DA. High-level intuitive features (hlifs) for intuitive skin lesion description. IEEE Trans Biomed Eng 2014;62(3):820–31.
- [15] Ahlgrimm-Siess V, Laimer M, Rabinovitz HS, Oliviero M, Hofmann-Wellenhof R, Marghoob AA, Scope A. Confocal microscopy in skin cancer. Current Dermatology Reports 2018;7(2):105–18.
- [16] Pacheco AG, Krohling RA. The impact of patient clinical information on automated skin cancer detection. Computers Biology Med 2020;116 103545.
- [17] Malvehy J, Pérez-Anker J, Toll A, Pigem R, Garcia A, Alos L, Puig S, Ex vivo confocal microscopy: revolution in fast pathology in dermatology, British J Dermatol 2020; Wiley Online Library.
- [18] Sultana A, Dumitrache I, Vocurek M, Ciuc M. Removal of artifacts from dermatoscopic images. In: 2014 10th International Conference on Communications (COMM). IEEE; 2014. p. 1–4.
- [19] Attia M, Hossny M, Zhou H, Nahavandi S, Asadi H, Yazdabadi A. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture. Computer Methods Programs Biomed 2019;177:17–30.
- [20] Giuffrida R, Conforti C, Di Meo N, Deinlein T, Guida S, Zalaudek I. Use of noninvasive imaging in the management of skin cancer. Curr Opin Oncol 2020;32(2):98–105.
- [21] Masood A, Ali Al-Jumaily A, Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms, Int J Biomedical Imaging 2013.
- [22] Rajinikanth V, Satapathy SC, Dey N, Fernandes SL, Manic KS. Skin melanoma assessment using kapur’s entropy and level set’a study with bat algorithm. In: Smart Intelligent Computing Appl. Springer; 2019. p. 193–202.
- [23] Zghal NS, Derbel N. Melanoma skin cancer detection based on image processing. Current Med Imaging 2020;16 (1):50–8.
- [24] Zakeri A, Hokmabadi A. Improvement in the diagnosis of melanoma and dysplastic lesions by introducing abcd-pdt features and a hybrid classifier. Biocybern Biomed Eng 2018;38(3):456–66.
- [25] Masood M, Iqbal K, Khan Q, Alowayr AS, Awan KM, Saleem MQ, Habib EOA. Multi-class skin cancer detection and classification using hybrid features extraction techniques. J Med Imaging Health Inform 2020;10(10):2466–72.
- [26] Albahar MA. Skin lesion classification using convolutional neural network with novel regularizer. IEEE Access 2019;7:38306–13.
- [27] Adegun A, Viriri S. Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of stateof-the-art. Artif Intell Rev 2020:1–31.
- [28] Li Y, Shen L. Skin lesion analysis towards melanoma detection us ing deep learning network. Sensors 2018;18 (2):556.
- [29] McPhee SJ, Papadakis MA. Current medical diagnosis & treatment 2015. Lange Medical Books/McGraw-Hill; 2014.
- [30] Cheong KH, Poeschmann S, Lai JW, Koh JM, Acharya UR, Yu SCM, Tang KJW. Practical automated video analytics for crowd monitoring and counting. IEEE Access 2019;7:183252–61.
- [31] Koh JM, Cheong KH. Automated electron-optical system optimization through switching levenberg-marquardt algorithms. J Electron Spectrosc Relat Phenom 2018;227:31–9.
- [32] Cheong KH, Koh JM. A hybrid genetic-levenberg marquardt algorithm for automated spectrometer design optimization. Ultramicroscopy 2019;202:100–6.
- [33] Kok C, Jahmunah V, Oh SL, Zhou X, Gururajan R, Tao X, Cheong KH, Gururajan R, Molinari F, Acharya UR. Automated prediction of sepsis using temporal convolutional network. Comput Biol Med 2020;127:103957.
- [34] Jahmunah V, Oh SL, Rajinikanth V, Ciaccio EJ, Cheong KH, Arunkumar N, Acharya UR. Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 2019;100:101698.
- [35] Lin AX, Ho AFW, Cheong KH, Li Z, Cai W, Chee ML, Ng YY, Xiao X, Ong MEH. Leveraging machine learning techniques and engineering of multi-nature features for national daily regional ambulance demand prediction. Int J Environ Res Public Health 2020;17(11):4179.
- [36] Ho AFW, To BZYS, Koh JM, Cheong KH. Forecasting hospital emergency department patient volume using internet search data. IEEE Access 2019;7:93387–95.
- [37] Cheong KH, Ngiam NJ, Morgan GG, Pek PP, Tan BY-Q, Lai JW, Koh JM, Ong MEH, Ho AFW. Acute health impacts of the southeast asian transboundary haze problem’a review. Int J Environ Res Public Health 2019;16(18):3286.
- [38] Ho AFW, Zheng H, Cheong KH, En WL, Pek PP, Zhao X, et al. The relationship between air pollution and all-cause mortality in singapore. Atmosphere 2020;11(1):9.
- [39] Tang KJW, Ang CKE, Theodoros C, Rajinikanth V, Acharya UR, Cheong KH, Artificial intelligence and machine learning in emergency medicine, Biocybern Biomed Eng.
- [40] Vision and Image Processing Lab, Accessed: 2019-01-08. http://vip.uwaterloo.ca/demos/skin-cancer-detection.
- [41] The International Skin Imaging Collaboration, Accessed: 2020-01-10. https://www.isic-archive.com/.
- [42] Iyer V, Ganti B, Hima Vyshnavi A, Krishnan Namboori P, Iyer S. Hybrid quantum computing based early detection of skin cancer. J Interdisciplinary Math 2020;23(2):347–55.
- [43] Zhang N, Cai Y-X, Wang Y-Y, Tian Y-T, Wang X-L, Badami B. Skin cancer diagnosis based on optimized convolutional neural network. Artif Intell Med 2020;102 101756.
- [44] Coppola D, Lee HK, Guan C. Interpreting mechanisms of prediction for skin cancer diagnosis using multi-task learning, in. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. p. 734–5.
- [45] Arora G, Dubey AK, Jaffery ZA, Rocha A. Bag of feature and support vector machine based early diagnosis of skin cancer. Neural Comput Appl 2020:1–8.
- [46] Pacheco AG, Sastry CS, Trappenberg T, Oore S, Krohling RA. On out-of-distribution detection algorithms with deep neural skin cancer classifiers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. p. 732–3.
- [47] Nida N, Irtaza A, Javed A, Yousaf MH, Mahmood MT. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy cmeans clustering. Int J Med Inform 2019;124:37–48.
- [48] Dascalu A, David E. Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope. EBioMedicine 2019;43:107–13.
- [49] Tan TY, Zhang L, Lim CP. Intelligent skin cancer diagnosis using improved particle swarm optimization and deep learning models. Appl Soft Comput 2019;84:105725. Elsevier.
- [50] Rezvantalab A, Safigholi H, Karimijeshni S, Dermatologist level dermoscopy skin cancer classification using different deep learning convolutional neural networks algorithms, arXiv preprint arXiv:1810.10348, 2018.
- [51] Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A, Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic), arXiv preprint arXiv:1605.01397, 2016.
- [52] Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, et al., Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, 2018, pp. 168–172.
- [53] Glaister J, Wong A, Clausi DA. Segmentation of skin lesions from digital images using joint statistical texture distinctiveness. IEEE Trans Biomed Eng 2014;61(4):1220–30.
- [54] Harangi B. Skin lesion classification with ensembles of deep convolutional neural networks. J Biomed Inform 2018;86:25–32.
- [55] Ma Z, Tavares JMR. A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J Biomed Health Inform 2015;20(2):615–23.
- [56] Oliveira RB, Mercedes Filho E, Ma Z, Papa JP, Pereira AS, Tavares JMR. Computational methods for the image segmentation of pigmented skin lesions: a review. Computer Methods Programs Biomed 2016;131:127–41.
- [57] Vasconcelos CN, Vasconcelos BN. Experiments using deep learning for dermoscopy image analysis. Pattern Recogn Lett 2020;139:95–103.
- [58] Yang J, Xie F, Fan H, Jiang Z, Liu J. Classification for dermoscopy images using convolutional neural networks based on region average pooling. IEEE Access 2018;6:65130–8.
- [59] Crew A, Tyagi A, Miller K, Cockburn M, E-Health tools for melanoma screening: Where we are and how we can improve., The Melanoma Letter 32 (3).
- [60] Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542(7639):115–8.
- [61] Janda M, Horsham C, Koh U, Gillespie N, Loescher LJ, Vagenas D, Soyer HP. Redesigning skin cancer early detection and care using a new mobile health application: protocol of the skin research project, a randomised controlled trial. Dermatology 2019;235(1):11–8.
- [62] Chatterjee S, Dey D, Munshi S. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. Computer Methods Programs Biomed 2019;178:201–18.
- [63] Maheshwari S, Pachori RB, Kanhangad V, Bhandary SV, Acharya UR. Iterative variational mode decomposition based automated detection of glaucoma using fundus images. Comput Biol Med 2017;88:142–9.
- [64] Acharya UR, Mookiah MRK, Koh JE, Tan JH, Bhandary SV, Rao AK, Fujita H, Hagiwara Y, Chua CK, Laude A. Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Comput Biol Med 2016;75:54–62.
- [65] Nunes JC, Guyot S, Deléchelle E. Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Machine Vision Appl 2005;16(3):177–88.
- [66] Acharya UR, Fujita H, Sudarshan VK, Oh SL, Muhammad A, Koh JE, Tan JH, Chua CK, Chua KP, San Tan R. Application of empirical mode decomposition (emd) for automated identification of congestive heart failure using heart rate signals. Neural Comput Appl 2017;28(10):3073–94.
- [67] Martis RJ, Acharya UR, Tan JH, Petznick A, Yanti R, Chua CK, Ng EK, Tong L. Application of empirical mode decomposition (emd) for automated detection of epilepsy using eeg signals. Int J Neural Syst 2012;22(06):1250027.
- [68] Maheshwari S, Pachori RB, Acharya UR. Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE J Biomed Health Inform 2017;21(3):803–13.
- [69] Pharwaha APS, Singh B, Shannon and non-shannon measures of entropy for statistical texture feature extraction in digitized mammograms. In: Proceedings of the world congress on engineering and computer science, Vol. 2, 2009, pp. 20–22.
- [70] Zhou N, Wang L. A modified t-test feature selection method and its application on the hapmap genotype data. Genomics, Proteomics Bioinform 2007;5(3–4):242–9.
- [71] Chandra B, Gupta M. An efficient statistical feature selection approach for classification of gene expression data. J Biomed Inform 2011;44(4):529–35.
- [72] Guan S, Zhao K, Yang S. Motor imagery eeg classification based on decision tree framework and riemannian geometry. Comput Intell Neurosci 2019.
- [73] Kotsiantis SB. Decision trees: a recent overview. Artif Intell Rev 2013;39(4):261–83.
- [74] Zhou Y, Song Z. Binary decision trees for melanoma diagnosis. In: International Workshop on Multiple Classifier Systems. Springer; 2013. p. 374–85.
- [75] Oka H, Tanaka M, Kobayashi S, Argenziano G, Soyer HP, Nishikawa T. Linear discriminant analysis of dermoscopic parameters for the differentiation of early melanomas from clark naevi. Melanoma Res 2004;14(2):131–4.
- [76] Strakowska M, Strakowski R, Strzelecki M, De Mey G, Wiecek B. Thermal modelling and screening method for skin pathologies using active thermography. Biocybern Biomed Eng 2018;38(3):602–10.
- [77] Anagnostopoulos C, Tasoulis DK, Adams NM, Pavlidis NG, Hand DJ. Online linear and quadratic discriminant analysis with adaptive forgetting for streaming classification. Stat Anal Data Mining: ASA Data Science J 2012;5(2):139–66.
- [78] Huang H, Liu Y, ten Bosch L, Cranen B, Boves L. Knowledge-based quadratic discriminant analysis for phonetic classification. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). p. 4145–8.
- [79] Sumithra R, Suhil M, Guru D. Segmentation and classification of skin lesions for disease diagnosis. Procedia Computer Sci 2015;45:76–85.
- [80] Lu C, Mandal M. Automated analysis and diagnosis of skin melanoma on whole slide histopathological images. Pattern Recogn 2015;48(8):2738–50.
- [81] Dvey-Aharon Z, Fogelson N, Peled A, Intrator N. Schizophrenia detection and classification by advanced analysis of eeg recordings using a single electrode approach. PloS One 2015;10(4) e0123033.
- [82] Patel AK, Chatterjee S. Computer vision-based limestone rock-type classification using probabilistic neural network. Geosci Front 2016;7(1):53–60.
- [83] Mendonça T, Ferreira PM, Marques JS, Marcal AR, Rozeira J. Ph 2-a dermoscopic image database for research and benchmarking. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE; 2013. p. 5437–40.
- [84] Yu L, Chen H, Dou Q, Qin J, Heng P-A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 2017;36(4):994–1004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c47ef15c-9d93-4239-9762-849dc3e89280