PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Site-specific uniform hazard spectrum in Eastern Turkey based on simulated ground motions including near-field directivity and detailed site effects

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, stochastic earthquake catalog of the Erzincan region in Turkey is generated based on synthetic ground motions. Monte Carlo simulation method is used to identify the spatial and temporal distribution of events. Ground motion time histories are generated using stochastic simulation methodology. Annual exceedance rate of each ground motion amplitude is calculated through statistical distribution of the complete set of ground motions. The results are compared with classical probabilistic seismic hazard analysis (PSHA). Classical PSHA generally produces larger spectral amplitudes than the proposed study due to wide range of aleatory variability. The effects of near-field forward directivity and detailed site response are also investigated on the results.
Czasopismo
Rocznik
Strony
309--330
Opis fizyczny
Bibliogr. 67 poz.
Twórcy
autor
  • Civil Engineering Department, Middle East Technical University, Ankara, Turkey
autor
  • Civil Engineering Department, Middle East Technical University, Ankara, Turkey
autor
  • Civil Engineering Department, Middle East Technical University, Ankara, Turkey
Bibliografia
  • 1. Abrahamson NA (2000) Effects of rupture directivity on probabilistic seismic hazard analysis. In: Proc. Sixth International Conference on Seismic Zonation: Managing Earthquake Risk in the 21st Century, Palm Springs, CA
  • 2. Abrahamson NA, Silva W (2008) Summary of the Abrahamson & Silva NGA ground-motion relations. Earthq Spectra 24(1):67–97
  • 3. Akansel VH, Ameri G, Askan A, Caner A, Erdil B, Kale Ö, Okuyucu D (2014) The 23 October 2011 Mw 7.0 Van (Eastern Turkey) earthquake: characteristics of recorded strong ground motions and post earthquake condition assessment of infrastructure and cultural heritage. Earthq Spectra 30(2):657–682
  • 4. Akkar S, Bommer J (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81(2):195–206. doi:10.1785/gssrl.81.2.195
  • 5. Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 3:1–53. doi:10.1007/s10518-005-0183-0
  • 6. Anderson J, Hough SE (1984) A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74(5):1969–1993
  • 7. Arias A (1970) A Measure of Earthquake Intensity. In: Hansen R (ed) Seismic Design for Nuclear Power Plants. MIT press, Cambridge, pp 438–483
  • 8. Askan A (2015) Estimation of Potential Seismic Damage in Erzincan, Project TUJJB-UDP-01-12
  • 9. Askan A, Sisman FN, Ugurhan B (2013) Stochastic strong ground motion simulations in sparsely-monitored regions: A validation and sensitivity study on the 13 March 1992 Erzincan (Turkey) earthquake. Soil Dyn Earthq Eng 55:170–181
  • 10. Assatourians K, Atkinson G (2013) EqHaz: An open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismol Res Lett 84(3):516–524. doi:10.1785/0220120102
  • 11. Atkinson G, Assatourians K, Boore MD, Campbell KW, Motazedian D (2009) A guide to differences between stochastic point-source and stochastic finite-fault simulations. Bull Seismol Soc Am 99(6):3192–3201. doi:10.1785/0120090058
  • 12. Banan KK, Kolaj M, Motazedian D, Sivathayalan S, Hunter JA, Crow HL, Pugin AJ, Brooks GR, Pyne M (2012) Seismic site response analysis for Ottawa, Canada: A comprehensive study using measurements and numerical simulations. Bull Seismol Soc Am 102(5):1976–1993. doi:10.1785/0120110248
  • 13. Beresnev I, Atkinson GM (1997) Modeling finite-fault radiation from the ωn spectrum. Bull Seismol Soc Am 87:67–84
  • 14. Beresnev IA, Atkinson GM, Johnson PA, Field EH (1998) Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake. II. Widespread nonlinear response at soil sites. Bull Seismol Soc Am 88(6):1402–1410
  • 15. Bolt BA (1973) Duration of strong motion. In: Proc. 5th World Conference of Earthquake Engineering, Rome, Italy
  • 16. Bommer J, Crowley H (2006) The influence of ground-motion variability in earthquake loss modelling. Bull Earthq Eng 4:231–248. doi:10.1007/s10518-006-9008-z
  • 17. Bommer J, Martinez-Pereira A (1999) The effective duration of earthquake strong motion. J Earthq Eng 3(2):127–172. doi:10.1080/13632469909350343
  • 18. Boore MD (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160(3–4):635–676
  • 19. Boore MD (2009) Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bull Seismol Soc Am 99(6):3202–3216. doi:10.1785/0120090056
  • 20. Boore MD (2013) The uses and limitations of the square-root-impedance method for computing site amplification. Bull Seismol Soc Am 103(4):2356–2368. doi:10.1785/0120120283
  • 21. Boore MD, Joyner WB (1997) Site amplifications for generic rock sites. Bull Seismol Soc Am 87(2):327–341
  • 22. Bray J, Rodriguez-Marek A (2004) Characterization of forward-directivity ground motions in the near-fault region. Soil Dyn Earthq Eng 24:815–828. doi:10.1016/j.soildyn.2004.05.001
  • 23. Cao T, Petersen MD, Cramer CH, Toppozada TR, Reichle MS, Davis JF (1999) The calculation of expected loss using probabilistic seismic hazard. Bull Seismol Soc Am 89(4):867–876
  • 24. Chopra S, Kumar D, Choudhury P, Yadav RBS (2012) Stochastic finite fault modelling of Mw 4.8 earthquake in Kachchh, Gujarat, India. J Seismol 16:435–449. doi:10.1007/s10950-012-9280-0
  • 25. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606
  • 26. Cramer CH (2006) Quantifying the uncertainty in site amplification modeling and its effects on site-specific seismic-hazard estimation in the Upper Mississippi embayment and adjacent areas. Bull Seismol Soc Am 96(6):2008–2020. doi:10.1785/0120060037
  • 27. Crowley H, Bommer J (2006) Modelling seismic hazard in earthquake loss models with spatially distributed exposure. Bull Earthq Eng 4(3):249–273. doi:10.1007/s10518-006-9009-y
  • 28. Demartinos K, Faccioli E (2012) Probabilistic seismic performance assessment of classes of buildings using physics-based simulations and ground-motion prediction equations. J Earthq Eng 16(1):40–60
  • 29. Deniz A (2006) Estimation of Earthquake Insurance Premium Rates Based on Stochastic Methods, Master of Science, Middle East Technical University
  • 30. Eads L, Miranda E, Krawinkler H, Lignos DG (2013) An efficient method for estimating the collapse risk of structures in seismic regions. Earthq Eng Struct Dyn 42:25–41. doi:10.1002/eqe.2191
  • 31. Ellingwood BR, Celik OC, Kinali K (2007) Fragility assessment of building structural systems in mid-America. Earthq Eng Struct Dyn 36:1935–1952. doi:10.1002/eqe.693
  • 32. Frankel A (1993) Three-dimensional simulations of the ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas fault. Bull Seismol Soc Am 83:1020–1041
  • 33. Graves RW, Pitarka A (2010) Broadband ground-motion simulation using a hybrid approach. Bull Seismol Soc Am 100(5A):2095–2123. doi:10.1785/0120100057
  • 34. Gu P, Wen YK (2007) A record-based method for the generation of tridirectional uniform hazard-response spectra and ground motions using the Hilbert-Huang transform. Bull Seismol Soc Am 97(5):1539–1556
  • 35. Hashash Y, Moon S (2011) Site amplification factors for deep deposits and their application in seismic hazard analysis for central US, Under USGS/NEHRP Grant: G09AP00123, University of Illinois at Urbana-Champaign
  • 36. Hung TV, Kiyomiya O (2013) Source Parameter Estimation and Stochastic Ground Motion Simulation Based on Recorded Accelerograms in Northwestern Vietnam. J Earthq Eng 17(3):304–322
  • 37. Joyner WB, Warrick RE, Fumal TE (1981) The effect of Quaternary alluvium on strong ground motion in the Coyote Lake, California, earthquake of 1979. Bull Seismol Soc Am 71:1333–1349
  • 38. Kempton J, Stewart JP (2006) Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. Earthq Spectra 22(4):985–1013
  • 39. Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall Inc, Upper Saddle River
  • 40. Luco N, Ellingwood BR, Hamburger RO, Hooper JD, Kimball JK, Kircher CA (2007) Risk-targeted versus current seismic design maps for the conterminous United States. In: Proc. SEAOC 2007 Convention Proceedings, Squaw Creek, California
  • 41. Mavroeidis GP, Papageorgiou AS (2003) A mathematical representation of near-fault ground motions. Bull Seismol Soc Am 93(3):1099–1131
  • 42. McGuire RK (2004) Seismic hazard and risk analysis. MNO-10, Earthquake Engineering Research Institute
  • 43. McGuire RK, Arabasz WJ (1990) An introduction to probabilistic seismic hazard analysis. Soc Explor Geophys 1:333
  • 44. Moghaddam H, Fanaie N, Motazedian D (2010) Estimation of stress drop for some large shallow earthquakes using stochastic point source and finite fault modeling. Sci Iran 17(3):217–235
  • 45. Mohammadioun B, Serva L (2001) Stress drop, slip type, earthquake magnitude, and seismic hazard. Bull Seismol Soc Am 91(4):604–707
  • 46. Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95(3):995–1010. doi:10.1785/0120030207
  • 47. Musson RMW (2000) The use of Monte Carlo simulations for seismic hazard assessment in the UK. Anadali Di Geofisica 43(1):1–9
  • 48. Naeim F, Lew M (1995) On the use of design spectrum compatible time histories. Earthq Spectra 11(1):111–127
  • 49. Nicknam A, Abbasnia R, Bozorgnasab M, Eslamian Y (2010) Synthesizing Broadband Time-Histories at Near Source Sites; Case Study, 2003 Bam Mw6.5 Earthquake. J Earthq Eng 14(6):898–917
  • 50. Novikova EI, Trifunac MD (1994) Duration of strong ground motion in terms of earthquake magnitude, epicentral distance, site condition and site geometry. Earthq Eng Struct Dyn 23:1023–1043
  • 51. Olsen KB, Archuleta RJ, Matarese JR (1996) Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault. Science 270:1628–1632
  • 52. Papoulia J, Fahjan YM, Hutchings L, Novikova T (2015) PSHA for Broad-Band Strong Ground-Motion Hazards in the Saronikos Gulf, Greece, from Potential Earthquake with Synthetic Ground Motions. J Earthq Eng 19(4):624–648
  • 53. Raschke M (2014) Insufficient Statistical Model Development of Ground-Motion Relations for Regions with Low Seismicity. Bull Seismol Soc Am 104(2):1002–1005. doi:10.1785/0120130215
  • 54. Roumelioti Z, Kiratzi A, Theodulidis N (2004) Stochastic strong ground-motion simulation of the 7 September 1999 Athens (Greece) earthquake. Bull Seismol Soc Am 94(3):1036–1052
  • 55. Schnabel PB, Lysmer J, Seed HB (1972) SHAKE: a computer program for earthquake response analysis of horizontally layered sites. Earthquake Engineering Research Center, University of California, Berkeley, p 102
  • 56. Shahi SK, Baker JW (2011) An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis. Bull Seismol Soc Am 101(2):742–755. doi:10.1785/0120100090
  • 57. Somerville PG (1998) Development of an improved ground motion representation for near fault ground motions. In: Proc. SMIP98 Seminar on Utilization of Strong-Motion Data, Oakland, CA
  • 58. Tahghighi H (2012) Simulation of Strong Ground Motion Using the Stochastic Method: Application and Validation for Near-Fault Region. J Earthq Eng 16(8):1230–1247
  • 59. Thenhaus PC, Campbell KW (2003) Seismic hazard analysis. In: Chan WF, Scawthorn C (eds) Earthquake engineering handbook. CRC Press, Boca Raton
  • 60. Trifunac MD, Brady AG (1975) A study on the duration of strong earthquake ground motion. Bulletinof Seismological Society of America 65(3):581–626
  • 61. Ugurhan B, Askan Gundogan A (2010) Stochastic strong ground motion simulation of the 12 November 1999 Düzce (Turkey) earthquake using a dynamic corner. Bull Seismol Soc Am 100(4):1498–1512. doi:10.1785/0120090358
  • 62. Ugurhan B, Askan A, Akinci A, Malagnini L (2012) Strong-ground-motion simulation of the 6 April 2009 L’Aquila, Italy, earthquake. Bull Seismol Soc Am 102(4):1429–1445. doi:10.1785/0120110060
  • 63. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84(4):974–1002
  • 64. Wen YK, Wu CL (2001) Uniform hazard ground motions for mid-America cities. Earthq Spectr 17(2):359–384
  • 65. Wu CL, Wen YK (2000) Earthquake Ground Motion Simulation and Reliability Implications, 630, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign
  • 66. Yalcinkaya E (2005) Stochastic finite-fault modeling of ground motions from the June 27, 1998 Adana-Ceyhan earthquake. Earth Planets Space 57:107–115
  • 67. Zafarani H, Noorzad A, Ansari A, Bargi K (2009) Stochastic modeling of Iranian earthquakes and estimation of ground motion for future earthquakes in Greater Tehran. Soil Dyn Earthq Eng 29:722–741
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c47c87c5-29fd-43d2-98c1-aefe9ff61a28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.