Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we consider the following critical Schrödinger equation involving (2, q)-Laplacian: [formula] The meaningful and interesting phenomenon is the simultaneous occurrence of (2, q)-Laplacian and critical nonlinearity in the above equation. In order to obtain existence of multiple normalized solutions for such equation, we need to make a detailed estimate. More precisely, for the L2-subcritical case, we use the truncation technique, concentration-compactness principle and the genus theory to get the existence of multiple normalized solutions. For the L2-supercritical case, we obtain a couple of normalized solution for the above equation by a fiber map and concentration-compactness principle.
Czasopismo
Rocznik
Tom
Strony
685--716
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
- Changchun Normal University, College of Mathematics, Changchun, 130032, P.R. China
autor
- Changchun Normal University, College of Mathematics, Changchun, 130032, P.R. China
Bibliografia
- [1] C.O. Alves, C. Ji, O.H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in RN, Calc. Var. Partial Differential Equations 61 (2022), Article no. 18.
- [2] V. Ambrosio, Multiple concentrating solutions for a fractional (p, q)-Choquard equation, Adv. Nonlinear Stud. 24 (2024), 510–541.
- [3] V. Ambrosio, V.D. Rădulescu, Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness, Israel J. Math. 262 (2024), 399–447.
- [4] V. Ambrosio, D. Repovš, Multiplicity and concentration results for a (p, q)-Laplacian problem in RN, Z. Angew. Math. Phys. 72 (2021), 33.
- [5] L. Baldelli, Y. Brizi, R. Filippucci, Multiplicity results for (p, q)-Laplacian equations with critical exponent in RN and negative energy, Calc. Var. Partial Differential Equations 60 (2021), 8.
- [6] L. Cai, V.D. Rădulescu, Normalized solutions for (p, q)-Laplacian equations with mass supercritical growth, J. Differential Equations, 391 (2024), 57–104.
- [7] T. Cazenave, P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), 549–561.
- [8] J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differential Equations 3 (1995), 493–512.
- [9] R. Chen, L. Wang, X. Song, Multiple normalized solutions for (2, q)-Laplacian equation problems in whole RN, Electron. J. Qual. Theory Differ. Equ. 48 (2024), 1–19.
- [10] S. Chen, X. Tang, S. Yuan, Normalized solutions for Schrödinger–Poisson equations with general nonlinearities, J. Math. Anal. Appl. 481 (2020), 123447.
- [11] S. Chen, D. Qin, V.D. Rădulescu, X. Tang, Ground states for quasilinear equations of N-Laplacian type with critical exponential growth and lack of compactness, Sci. China Math. 68 (2025), no. 6, 1323–1354.
- [12] X. Cheng, C. Miao, L. Zhao, Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case, J. Differential Equations 261 (2016), 2881–2934.
- [13] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), 443–496.
- [14] X. Cui, Y. Yang, Existence of solutions for fractional (p, q)-Laplacian problems involving critical Hardy–Sobolev nonlinearities, Taiwanese J. Math. 28 (2024), 947–967.
- [15] Y. Du, J. Su, C. Wang, On the critical Schrödinger–Poisson system with p-Laplacian, Comm. Pure Appl. Math. 21 (2022), 1329–1342.
- [16] Y. Duan, Y. Wei, Properties of the positive solutions of fractional p&q-Laplace equations with a sign-changing potential, Acta Math. Sci. Ser. B (Engl. Ed.) 44 (2024), 2422–2442.
- [17] X. Han, Z. Naghizadeh, B. Zhang, Nonexistence and multiplicity results for a fractional weighted (p, q)-Kirchhoff system, Complex Var. Elliptic Equ. 70 (2025), 512–524.
- [18] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997), 1633–1659.
- [19] L. Jeanjean, T.T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann. 384 (2022), 101–134.
- [20] L. Jeanjean, S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity 32 (2019), 4942–4966.
- [21] L. Jeanjean, T. Luo, Sharp nonexistence results of prescribed L2-norm solutions for class of Schrödinger–Poisson and quasilinear equations, Z. Angew. Math. Phys. 64 (2013), 937–954.
- [22] J. Jiang, Y. Yang, Existence of solutions for the (p,N)-Laplacian equation with logarithmic and critical exponential nonlinearities, Topol. Methods Nonlinear Anal. 64 (2024), 243–256.
- [23] O. Kavian, Introduction á la théorie des points critiques et applications aux problèmes elliptiques, Springer, Berlin, 1993.
- [24] X. Li, S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math. 22 (2020), 1950023.
- [25] X. Li, C. Song, Q. Xie, Multiplicity of normalized solutions for Schrödinger equation with mixed nonlinearity, Taiwanese J. Math. 28 (2024), 589–609.
- [26] Q. Li, W. Zou, The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the L2-subcritical and L2-supercritical cases, Adv. Nonlinear Anal. 11 (2022), 1531–1551.
- [27] S. Liang, S. Liang, S. Shi, T. Van Nguyen, On multiplicity and concentration of solutions for fractional p-Laplace Choquard–Kirchhoff equations, Adv. Differential Equations 30 (2025), 35–68.
- [28] S. Liang, J. Ma, S. Shi, Y. Song, Multiple normalized solutions for Choquard equation involving the biharmonic operator and competing potentials in RN, Bull. Math. Sci. (2025), 2450017.
- [29] S. Liang, S. Shi, T. Van Nguyen, Multiplicity and concentration properties for fractional Choquard equations with exponential growth, J. Geom. Anal. 34 (2024), 367.
- [30] S. Liang, Y. Song, S. Shi, Concentrating solutions for double critical fractional Schrödinger–Poisson system with p-Laplacian in R3, Adv. Nonlinear Anal. 14 (2025), 20240063.
- [31] S. Liang, M. Sun, S. Shi, S. Liang, On multi-bump solutions for the Choquard–Kirchhoff equations in RN, Discrete Contin. Dyn. Syst. Ser. S 16 (2023), 3163–3193.
- [32] E. Lieb, M. Loss, Analysis, Grad. Stud. Math., 2001.
- [33] P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, Part 2, Ann. Inst. Poincare Anal. Nonlin. 1 (1984), 109–145, 223–283.
- [34] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoam. 1 (1985), 145–201.
- [35] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267–284.
- [36] P. Marcellini, Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions, J. Differential Equations 90 (1991), 1–30.
- [37] P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993), 296–333.
- [38] N. Mastorakis, H. Fathabadi, On the solution of p-Laplacian for non-Newtonian fluid flow, WSEAS Trans. Math. 8 (2009), 238–45.
- [39] C. Miao, G.X. Xu, L.F. Zhao, The dynamics of the 3D radial NLS with the combined terms, Comm. Math. Phys. 318 (2013), 767–808.
- [40] A. Razani, F. Safari, G.M. Figueiredo, Existence and multiplicity of solutions for a weighted (p, q)-Laplacian problem on the Heisenberg Lie groups, Bull. Belg. Math. Soc. Simon Stevin 30 (2023), 281–296.
- [41] S. Ren, H. Zhang, Z. Cheng, Y. Gao, Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system with p-Laplacian, (2022), arXiv:2212.03138.
- [42] A. Sanhaji, A. Dakkak, M. Moussaoui, The first eigencurve for a Neumann boundary problem involving p-Laplacian with essentially bounded weights, Opuscula Math. 43 (2023), no. 4, 559–574.
- [43] F. Sk, Remarks on the fractional Moser–Trudinger inequality, J. Anal. Math. 148 (2022), 447–470.
- [44] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential. Equations 269 (2020), 6941–6987.
- [45] M. Willem, Minimax Theorems, Birkhäuser, Boston, (1996).
- [46] M. Xiang, Y. Ma, M. Yang, Normalized homoclinic solutions of discrete non local double phase problems, Bull. Math. Sci. 14 (2024), no. 2, Paper No. 2450003, 18 pp.
- [47] D. Xiao, V.N. Thin, S. Liang, Normalized solutions for critical Schrödinger–Poisson system involving p-Laplacian in R3, Z. Angew. Math. Phys. 76 (2025), Paper no. 10.
- [48] J. Yang, J. Zhang, W. Li, G. Tian, Existence of multiple positive solutions for a class of quasilinear Schrödinger–Poisson systems with p-Laplacian and singular nonlinearity terms in RN, Ric. Mat. 74 (2023), 933–947.
- [49] X. Zhang, V.N. Thin, S. Liang, On multi-bump solutions for a class of (N, q)-Laplacian equation with critical exponential growth in RN, J. Math. Anal. Appl. 543 (2025), Paper No. 128941, 33 pp.
- [50] M. Zhen, B. Zhang, Normalized ground states for the critical fractional NLS equation with a perturbation, Rev. Mat. Complut. 35 (2022), 89–132.
- [51] V.V. Zhikov, On Lavrentiev’s phenomenon, Russ. J. Math. Phys. 3 (1995), 249–269.
- [52] V.V. Zhikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994.
- [53] V.V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.) 173 (2011), 463–570.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4785383-e72b-4d3c-9b79-2d3e266472fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.