PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on power losses of the 50 kVA SiC converter including reverse conduction phenomenon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with performance of the 50 kVA three-phase converter built with switches based on SiC MOSFET and anti-parallel Schottky diodes. In contrast to popular IGBT converters, a negative switch current is capable of flowing through the reverse conducting transistor, which results in different distribution of power losses among the devices. Thus, equations describing the conduction power losses of the transistor and diode are improved and verified by means of circuit simulations in Saber. Moreover, a comparison of power losses calculated with the use of standard and new equations is also shown. Total power losses in three SiC MOSFET modules of a 50 kVA converter operating at 20 kHz are up to 30% lower when reverse conduction is taken into account. This shows the importance of the discussed problem and proves that much better accuracy in the estimation of power losses and junction temperatures of SiC devices may be obtained with the proposed approach.
Rocznik
Strony
907--914
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Warsaw University of Technology, Institute of Control and Industrial Electronics, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Control and Industrial Electronics, 75 Koszykowa St., 00-662 Warsaw, Poland
Bibliografia
  • [1] J. Milan, P. Gondignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, “A survey of wide bandgap power semiconductor devices”, IEEE Transactions on Power Electronics 29 (5), 2155‒2163 (2014).
  • [2] J. Rabkowski, D. Peftitsis, H.P. Nee, “SiC power transistors – a new era in power electronics is initiated”, IEEE Industrial Electronics Magazine 6(2), 17‒26 (2012).
  • [3] R. Lai et al., “A high-power-density converter”, IEEE Industrial Electronics Magazine 4 (4), 4–12 (2010).
  • [4] T.J. Han, J. Nagashima, S.J. Kim, S. Kulkarni, F. Barlow, “High density 50 kW SiC inverter systems using a JFET based six-pack power module”, 8th International Conference on Power Electronics and ECCE Asia, 764‒769 (2011).
  • [5] F. Xu, T.J. Han, D. Jiang, L.M. Tolbert, F. Wang, J. Nagashima, S.J. Kim, S. Kulkarni, F. Barlow, “Development of a SiC JFET-based six-pack power module for a fully integrated inverter”, IEEE Transactions on Power Electronics 28 (3), 1464–1478 (2013).
  • [6] J. Rabkowski, D. Peftitsis, H.P. Nee, “Design steps towards a 40-kVA SiC JFET inverter with natural-convection cooling and an efficiency exceeding 99.5%”, IEEE Transactions on Industry Applications 49(4), 1589‒1598 (2013).
  • [7] F. Alkayal, J.B. Saada, “Compact three phase inverter in silicon carbide technology for auxiliary converter used in railway applications”, 15th European Conference on Power Electronics and Applications EPE-ECCE Europe (2013).
  • [8] B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices”, IEEE Transactions on Power Electronics 29 (5), 2606‒2617 (2014).
  • [9] B. Wrzecionko, B. Bortis, J.W. Kolar, “A 120°C ambient temperature forced air-cooled normally-off SiC JFET automotive inverter system”, IEEE Transactions on Power Electronics 29 (5), 2345‒2358 (2014).
  • [10] J. Rice, J. Mookken, “Economics of high efficiency SiC MOSFET based 3-ph motor drive”, Proc. of PCIM Europe, 1‒8 (2014).
  • [11] T. Friedli, M. Hartmann, J.W. Kolar, “The essence of three-phase PFC rectifier systems – part II”, IEEE Transactions on Power Electronics 29 (2), 543‒560 (2014).
  • [12] J. Colmenarez, D. Peftitsis, G. Tolstoy, D.P. Sadik, H.P. Nee, J. Rabkowski, “High-efficiency 3-phase inverter with SiC MOSFET power modules for motor-drive applications”, Energy Conversion Congress and Exposition, 468‒474 (2014).
  • [13] D.C. Sheridan, K. Chatty, V. Bondarenko, J.B. Casady, “Reverse conduction properties of vertical SiC trench JFETs”, 24th International Symposium on Power Semiconductor Devices and ICs, 385–388 (2012).
  • [14] T. Funaki, M. Matsushita, M. Sasagawa, T. Kimoto, T. Hikihara, “A study on SiC devices in synchronous rectification of DC-DC converter”, Twenty Second Annual IEEE Applied Power Electronics Conference, 339–344 (2007).
  • [15] B. Ållebrand, H-P Nee, “On the choice of blanking times at turn-on and turn-off for the diode-less SiC JFET inverter bridge”, European Conference on Power Electronics and Applications (2001).
  • [16] R.A. Wood, Urciuoli D.P., Salem, T.E., Green, R., “Reverse conduction of a 100 A SiC MOSFET module in high-power applications”, Applied Power Electronics Conference and Exposition, 1568–1571 (2010).
  • [17] C. Cai, W. Zhou, K. Sheng, “Characteristics and application of normally-off SiC-JFETs in converters without antiparallel diodes”, IEEE Transactions on Power Electronics 28 (10), 4850–4860 (2013).
  • [18] R. Ouaida, X. Fonteneau, F. Dubois, D. Bergogne, F. Morel, H. Morel, S. Oge, C. Bretagne, Z. A. Le Piquet, “SiC vertical JFET pure diode-less inverter leg”, Applied Power Electronics Conference and Exposition, 512 – 517 (2013).
  • [19] G. Kampitsis, P. Stefas, N. Chrysogelos, S. Papathanassiou, S. Manias, “Assessment of the reverse operational characteristics of SiC JFETs in a diode-less inverter”, 39th Annual Conference of the IEEE Industrial Electronics Society, 477–482 (2013).
  • [20] H. Liu, H. Wu, Y. Lu, Y. Xing, K. Sun, “A high efficiency inverter based on SiC MOSFET without externally antiparalleled diodes”, Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition, 163‒167 (2014).
  • [21] D. Han, J. Noppakunkajorn, B. Sarlioglu, “Analysis of a SiC three-phase voltage source inverter under various current and power factor operations”, 39th Annual Conference of the IEEE Industrial Electronics Society, 447–450 (2013).
  • [22] X. Fonteneau, F. Morel, C. Buttay, H. Morel, P. Lahaye, “Predicting static losses in an inverter-leg built with SiC normally-off JFETs and SiC diodes”, Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, 2636 – 2642 (2013).
  • [23] L.K. Mestha, P.D. Evans, “Analysis of on-state losses in PWM inverters”, IEE Proc., 136B (4) 189‒195 (1989).
  • [24] F. Casanellas, “Losses in PWM inverters using IGBTs”, IEE Proc. -Electr. Power Appl., 141 (5), 235‒239 (1994).
  • [25] CAS100H12AM1 datasheet rev. B, www.cree.com/power.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4773417-b5ce-4f0a-b969-4e52b9c29054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.