PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploration on flotation behavior of galena in seawater and related mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The utilization of seawater in mineral flotation is the future development trend because of the shortage of fresh water resources. However, at present, the flotation behavior and mechanism of galena in seawater are not clear. Therefore, this paper comprehensively carried out the effect mechanism of seawater on the flotation of galena. Micro-flotation results illustrated that the recovery of galena was higher in deionized water than that in 5×10-2 mol/L MgCl2 solution, 1×10-2 mol/L CaCl2 solution and seawater. Contact angle determination and Zeta potential distribution measurements showed that hydrophilic substances adsorbed on the surface of galena under alkaline conditions. X-ray photoelectron spectroscopy (XPS) analysis further indicated that these substances were hydroxides precipitates, carbonate precipitates and hydroxyl complexes formed by divalent magnesium and calcium ions, which prevented the adsorption of collector on mineral surface. As a result, the galena recovery declined in 5×10-2 mol/L MgCl2 solution, 1×10-2 mol/L CaCl2 solution and seawater.
Rocznik
Strony
art. no. 151524
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • State Key Laboratory of Mineral Processing, Beijing 102628, China
  • BGRIMM Technology Group,Beijing 100160, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • BGRIMM Technology Group,Beijing 100160, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • State Key Laboratory of Mineral Processing, Beijing 102628, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • State Key Laboratory of Mineral Processing, Beijing 102628, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
Bibliografia
  • ACHILLEOS, A.A., GAHAN, L.R., HAMBLEY, T.W., HEALY, P.C., WEEDON, D.M., 1989. Structural and x-ray photoelectron spectroscopic properties of hydrophobic cobalt(III) ‘Cage’ complexes with dithiocarbamate anions. Inorganica Chimica Acta. 157, 209-214.
  • AI, G., HUANG, K., LIU, C., YANG, S., 2021. Exploration of amino trimethylene phosphonic acid to eliminate the adverse effect of seawater in molybdenite flotation. International Journal of Mining Science and Technology. 31, 1129-1134.
  • BYRNE, P., WOOD, P.J., REID, I., 2012. The Impairment of River Systems by Metal Mine Contamination: A Review Including Remediation Options. Crit. Rev. Environ. Sci. Technol.. 42, 2017-2077.
  • CASTRO, S., LASKOWSKI, J.S., 2011. Froth Flotation in Saline Water. Powder & Particle. 29, 4-15.
  • CASTRO, S., LOPEZ-VALDIVIESO, A., LASKOWSKI, J.S., 2016. Review of the flotation of molybdenite. Part I: Surface properties and floatability. International Journal of Mineral Processing. 148, 48-58.
  • CASTRO, S., MIRANDA, C., TOLEDO, P., LASKOWSKI, J.S., 2013. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. International Journal of Mineral Processing. 124, 8-14.
  • CHANG, Z.Y., CHEN, X.M., PENG, Y.J., 2018. The effect of saline water on the critical degree of coal surface oxidation for coal flotation. Minerals Engineering. 119, 222-227.
  • CHEN, Y., CHEN, X., PENG, Y., 2021. The depression of molybdenite flotation by sodium metabisulphite in fresh water and seawater. Minerals Engineering. 168, 106939.
  • CHRISTIE, A.B., LEE, J., SUTHERLAND, I., WALLS, J.M., 1983. An XPS study of ion-induced compositional changes with group II and group IV compounds. Applications of Surface Science. 15, 224-237.
  • HAYCOCK, D.E., KASRAI, M., NICHOLLS, C.J., Urch, D.S., 1978. The electronic structure of magnesium hydroxide (brucite) using X-ray emission, X-ray photoelectron, and auger spectroscopy. Journal of the Chemical Society, Dalton Transactions. 1791-1796.
  • JELDRES, R.I., FORBES, L., CISTERMAS, L.A., 2016. Effect of Seawater on Sulfide Ore Flotation: A Review. Mineral Processing and Extractive Metallurgy Review. 37, 369-384.
  • KESTER, D.R., DUEDALL, I.W., CONNORS, D.N., PYTKOWICZ, R.M., 1967. Preparation of artificial seawater. 12, 176-179.
  • LASKOWSKI, J., CASTRO, S., 2015. Flotation in concentrated electrolyte solutions. International Journal of Mineral Processing. 144, 50-55.
  • LASKOWSKI, J.S., YOON, R.-H., 1991. Energy Barrier in Particle to Bubble Attachment and its Effect on Flotation Kinetics. XVII International Minerals Processing Congress. 237–249.
  • LI, W., LI, Y., 2019. Improved understanding of chalcopyrite flotation in seawater using sodium hexametaphosphate. Minerals Engineering. 134, 269-274.
  • LI, Y., ZHU, H., LI, W., ZHU, Y., 2019a. A fundamental study of chalcopyrite flotation in sea water using sodium silicate. Minerals Engineering. 139, 105862.
  • LI, Y.B., XIE, S.B., ZHAO, Y.L., XIA, L., LI, H.Q., SONG, S.X., 2019b. The Life Cycle of Water Used in Flotation: a Review. Mining Metall. Explor.. 36, 385-397.
  • LI, Y.B., LI, W.Q., XIAO, Q., HE, N., REN, Z.J., Lartey, C., Gerson, A.R., 2017. The Influence of Common Monovalent and Divalent Chlorides on Chalcopyrite Flotation. Minerals. 7.
  • LI, Z., RAO, F., SONG, S., LI, Y., LIU, W., 2018. Slime coating of kaolinite on chalcopyrite in saline water flotation. International Journal of Minerals, Metallurgy, and Materials. 25, 481-488.
  • LUCAY, F., CISTERNAS, L.A., GALVEZ, E.D., A., L.-V., 2015. Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation. Minerals & Metallurgical Processing. 32, 203-208.
  • MU, Y., PENG, Y., 2019a. The effect of saline water on copper activation of pyrite in chalcopyrite flotation. Minerals Engineering. 131, 336-341.
  • MU, Y., PENG, Y., 2019b. The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water. Minerals Engineering. 142. 105921
  • PENG, Y., BRADSHAW, D., 2012. Mechanisms for the improved flotation of ultrafine pentlandite and its separation from lizardite in saline water. Minerals Engineering. 36-38, 284-290.
  • PENG, Y., LI, Y.B., LI, W.Q., Fang, X., Liu, C., Fan, R., 2020. Elimination of adverse effects of seawater on molybdenite flotation using sodium silicate. Minerals Engineering. 146, 106108.
  • QIU, Z., LIU, G., LIU, Q., Zhong, H., 2016. Understanding the roles of high salinity in inhibiting the molybdenite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 509, 123-129.
  • RAMIREZ, A., GUTIERREZ, L., LASKOWSKI, J.S., 2020a. Use of "oily bubbles" and dispersants in flotation of molybdenite in fresh and seawater. Minerals Engineering. 148, 106197.
  • RAMIREZ, A., GUTIERREZ, L., VEGA-GARCIA, D., REYES-BOZO, L., 2020b. The Depressing Effect of Kaolinite on Molybdenite Flotation in Seawater. Minerals. 10, 578.
  • RAMIREZ, A., ROJAS, A., GUTIERREZ, L., LASKOWSKI, J.S., 2018. Sodium hexametaphosphate and sodium silicate as dispersants to reduce the negative effect of kaolinite on the flotation of chalcopyrite in seawater. Minerals Engineering. 125, 10-14.
  • REBOLLEDO, E., LASKOWSKI, J.S., GUTIERREZ, L., Castro, S., 2017. Use of dispersants in flotation of molybdenite in seawater. Minerals Engineering. 100, 71-74.
  • SHENG, Q., YIN, W., YANG, B., CAO, S., SUN, H., MA, Y., CHEN, K., 2021. Improving surface sulfidization of azurite with ammonium bisulfate and its contribution to sulfidization flotation. Minerals Engineering. 171, 107072.
  • SONG, N., SUN, C., YIN, W., YAO, J., YANG, B., LIU, X., 2020. Genetic Characteristics Analysis of the Effect of Seawater on Mineral Flotation. Metal Mine. 6, 2-8.
  • SU, J., 2012. Study of adsorption behavior and mechanism of heteropolar sulfhydryl collectors on galena. Central South University.
  • SUGAMA, T., KUKACKA, L.E., CARCIELLO, N., Hocker, N.J., 1989. Study of interactions at water-soluble polymer/Ca(OH)2 or gibbsite interfaces by XPS. Cement and Concrete Research. 19, 857-867.
  • SUN, H., YANG, B., ZHU, Z., YIN, W., SHENG, Q., HOU, Y., YAO, J., 2021. New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model. Minerals Engineering. 160, 106660.
  • WANG, B., PENG, Y.J., 2014. The effect of saline water on mineral flotation - A critical review. Minerals Engineering. 66-68, 13-24.
  • WANG, X., ZHAO, B., LIU, J., ZHU, Y., HAN, Y., 2022. Dithiouracil, a highly efficient depressant for the selective separation of molybdenite from chalcopyrite by flotation: Applications and mechanism. Minerals Engineering. 175, 107287.
  • YANG, B., YIN, W., ZHU, Z., SUN, H., SHENG, Q., FU, Y., YAO, J., ZHAO, K., 2021. Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite. Separation and Purification Technology. 256, 117803.
  • YANG, B., ZHU, Z., SUN, H., YIN, W., HONG, J., CAO, S., TANG, Y., ZHAO, C., YAO, J., 2020. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant. Minerals Engineering. 156, 106492.
  • ZHANG, J., ZHANG, X.-G., WEI, X.-X., CHENG, S.-Y., HU, X.-Q., LUO, Y.-C., XU, P.-F., 2022. Selective depression of galena by sodium polyaspartate in chalcopyrite flotation. Minerals Engineering. 180, 107464.
  • ZHANG, M., PENG, Y.J., XU, N., 2015a. The effect of sea water on copper and gold flotation in the presence of bentonite. Minerals Engineering. 77, 93-98.
  • ZHANG, M., XU, N., PENG, Y.J., 2015b. The entrainment of kaolinite particles in copper and gold flotation using fresh water and sea water. Powder Technology. 286, 431-437.
  • ZHU, Z., YIN, W., WANG, D., SUN, H., CHEN, K., YANG, B., 2020. The role of surface roughness in the wettability and floatability of quartz particles. Applied Surface Science. 527, 146799.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4743195-8225-442c-9d1e-a436d51b8c4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.