PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of soil structure interaction on the placement of active control systems in structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article begins by outlining the developed program and subsequently applies it to typical structures to emphasize the importance of active control and SSI. The study involves a comparison of dynamic response and control force results to determine the optimal controller position for a column-beam type structure, with and without considering SSI. The central question addressed is whether the influence of soil-structure interaction can be disregarded in selecting the optimal controller position.To address this, a digital simulation is conducted on a simple three-story structure within this document.
Rocznik
Strony
44--53
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Faculty of technology, RISAM Laboratory, Department of Civil Engineering, University Abou Bekr Belkaid of Tlemcen, Algeria
  • Faculty of technology, RISAM Laboratory, Department of Civil Engineering, University Abou Bekr Belkaid of Tlemcen, Algeria
Bibliografia
  • 1. Wang L et al. Seismic control of a smart structure with semi-active tuned mass damper and adaptive stiffness property. Earthquake En-gineering and Resilience. 2023;2(1): 74-93. DOI:10.1002/eer2.38
  • 2. Wang L et al. Adaptive-passive tuned mass damper for structural aseismic protection including oil-structure interaction. Soil Dynamics and Earthquake Engineering. 2022; 158: 107298. DOI:10.1016/j.soildyn.2022.107298
  • 3. Wang L et al. Study on adaptive-passive eddy current pendulum tuned mass damper for wind-induced vibration control. The Structural Design of Tall and Special Buildings. 2020; 29(15): e1793. DOI:10.1002/tal.1793
  • 4. Wang L et al, Zhou Y. An adaptive-passive retuning device for a pendulum tuned mass damper considering mass uncertainty and op-timum frequency. Structural Control and Health Monitoring. 2019;26(7): e2377. DOI:10.1002/stc.2377
  • 5. Reteri K. Comportement dynamiques des structures intelligentes Poteau-poutre en tenant compte de l’effet de l’interaction sol-structure, Mémoire de Magister, option génie parasismique, universi-té A.B.B. Tlemce., 2013. http://dspace1.univ-tlemcen.dz/handle/112/4499
  • 6. Zhang H et al. Seismic control of adaptive variable stiffness intelli-gent structures using fuzzy control strategy combined with LSTM. Journal of Building Engineering. 2023; 78:107549. DOI:10.1016/j.jobe.2023.107549
  • 7. Soong T, Spencer B Jr. Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures. 2002; 24(3):243–259 DOI: 10.1016/S0141-0296(01)00092-X
  • 8. Lynch JP. Active Structural Control Research at Kajima Corporation (The National Science Foundation’s Summer Institute in Japan Pro-gram). 1998. Ph.D. Candidate (jplynch@stanford.edu) Department of Civil and Environmental Engineering Stanford University.
  • 9. Trindade MA. Contrôle hybride actif- passif des vibrations de struc-tures par des matériaux Piézoélectriques et viscoélastiques: Poutres sandwich/multicouches intelligentes 2000.
  • 10. Wang L et al. Study on self-adjustable variable pendulum tuned mass damper. The Structural Design of Tall and Special Buildings 2018; 28(1): e1561. DOI:10.1002/tal.1561
  • 11. Wang L et al. Semi-active eddy current pendulum tuned mass damp-er with variable frequency and damping. Smart Structures and Sys-tems. 2020; 25(1): 65-80. DOI:10.12989/sss.2020.25.1.065
  • 12. Mekki BO. Amortissement semi-actif des structures flexibles: présen-tée à L’Université à degli Studi di Roma "Tor Vergata" et du diplôme de docteur de l’école nationale des ponts et chaussées. 2006.
  • 13. Wang L et al. Bi-directional semi-active tuned mass damper for torsional asymmetric structural seismic response control. Engineer-ing Structures. 2023; 294: 116744. DOI:10.1016/j.engstruct.2023.116744
  • 14. Wang L et al. An adaptive-passive retuning device for a pendulum tuned mass damper considering mass uncertainty and optimum fre-quency. Structural Control and Health Monitoring. 2019; 26(7): e2377. DOI:10.1002/stc.2377
  • 15. Richard E, Christenson BS. Semi-active Control Of Civil Structures For Natural Hazard Mitigation: Analytical And Experimental Studies A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Doctor of hilosophy by Department of Civil Engineering and Geo-logical Sciences Notre Dame. 2001. Indiana.
  • 16. Wang L et al. Seismic performance improvement of base-isolated structures using a semi-active tuned mass damper, Engineering Structures. 2022;271:114963. DOI:10.1016/j.engstruct.2022.114963
  • 17. Wang L et al. Seismic Response Control of a Nonlinear Tall Building Under Mainshock-Aftershock Sequences Using Semi-Active Tuned Mass Damper. International Journal of Structural Stability and Dy-namics. 2023; 23(16-18): 2340027. DOI:10.1142/S0219455423400278
  • 18. Preumont A. Vibration Control of Active Structures: An Introduction Third Edition. 2011(179). ISBN : 978-94-007-2032-9
  • 19. Julliere B. Contrôle actif à l’aide de piézo-composites des défor*-mations induites thermiquement dans les matériaux composites: Mémoire présenté à la Faculté des études supérieures de l’Université Laval dans le cadre du programme de maîtrise en génie mécanique pour l’obtention du grade de maîtresses sciences (M.Se.). 2006.
  • 20. Jean P. Isolation vibratoire par contrôle semi-actif d’amortisseurs magnéto-rhéologiques pour l’interface lanceur/charge utile Thèse de doctorat du Conservatoire National des Arts et Métiers (Spécialité Mécanique). 2006.
  • 21. Ho Chey M. Passive And Semi-Active Tuned Mass Damper Building Systems. These de doctorat. 2007. University of Canterbury. Christ-church. New Zealand.
  • 22. Cheng FY et al. Smart structures Innovative systems for Seismic Response control. Taylor and Francis group. 2008.
  • 23. Spencer BF. Structural Control in Honor of Takuji Kobori: The 14th World Conference on Earthquake Engineering October 12-17. 2008. Beijing. China.
  • 24. Maebayashi K, Shiba K, Mita A, Inada Y. Hybrid mass damper system for response control of building. 1992.
  • 25. Steven L Kramer. Geotechnical Earthquake Engineering. Prentice Hall. New Jersey. 1996.
  • 26. Kutanis M, Elmas M. Non-linear Seismic Soil-Structure Interaction Analysis Based on the Substructure Method in the Time Domain. Journal of Structural Engineering. 2001(25): 617-626.
  • 27. Wolf JP, Deeks AJ. Foundation Vibration Analysis: A Strength-of-Materials Approach (ISBN 0 7506 6164 X). Printed and bound in Great Britain by Biddles. 2004. Kings Lynn (Designs and Patents Act 1988).
  • 28. Shakibet H, Fuladgar A. Dynamic soil-structure interaction effects on the seismic response of asymmetric buildings. 2004.
  • 29. Oudjene M et al. Influence de la catégorie de site sur le comporte-ment sismique des structures rigides. 2005. Application des règles parasismiques algériennes 99 (RPA99).
  • 30. Seghir A. Contribution à la modélisation numérique de la réponse sismique des ouvrages avec interaction sol-structure et interaction fluide-structure: Application à l’étude des barrages poids en béton. Thèse de doctorat. 2011.
  • 31. Taha A et al. Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study, Engineering and Technology In-ternational Journal of Structural and Construction Engineering. 2022; 16(12). https://www.researchgate.net/publication/366701958
  • 32. Hassani N et al. Effect of soil-structure interaction on inelastic dis-placement ratios of degrading structures. Soil Dyn. Earthq. Eng. 2018; 104; 75–87. DOI:10.1016/j.soildyn.2017.10.0040
  • 33. Mercado J et al. Evaluation of substructure and direct modeling approaches in the seismic response of tall buildings Geo-Congress 2020; 30-40. doi:10.1061/9780784482810.004
  • 34. Oz I et al. Effect of soil-structure interaction on the seismic response of existing low and mid-rise RC buildings. Appl. Sci. 2020;10(23):8357. DOI:10.3390/app10238357
  • 35. Bapir B et al. Soil-structure interaction: A state-of-the-art review of modeling techniques and studies on seismic response of building structures, Frontiers in Built Environment. 2023;9:1120351 doi: 10.3389/fbuil.2023.1120351
  • 36. Ragi K et al. The Effect of Soil-Structure Interaction (SSI) on Struc-tural Stability and Sustainability of RC Structures, Civil and Environ-mental Engineering Reports. 2024; 34(1). doi :10.59440/ceer/184254
  • 37. Jabini A et al. Comparing the performance of substructure and direct methods to estimate the effect of SSI on seismic response of mid-rise structures,” International Journal of Geotechnical Engineering. 2021; 15 (1): 81–94. DOI: 10.1080/19386362.2019.1597560
  • 38. Wolf JP, Deeks AJ. Foundation Vibration Analysis: A Strength-of-Materials Approach (ISBN 0 7506 6164 X). Printed and bound in Great Britain by Biddles. 2004. Kings Lynn (Designs and Patents Act 1988).
  • 39. Cheng FY et al. Smart structures Innovative systems for Seismic Response control, Taylor and Francis group. 2008.
  • 40. Cheng FY et al. Generalized Optimal Active Control Algorithm Of Seismic Structures And Related Soil-Structure Formulation in Com-putational mechanics in structural engineering recent developements and furture trends: Cheng FY and Fu ZZ (eds). Elsevier Applied Sci-ence. London. 1991.
  • 41. Soong TT. Active Structural Control: Theory and Practice. 1st edn. Longman Scientific&Technical. UK and John Wiley & Sons. 1990. New York. ISBN 0-470-21670-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c47345ca-54d8-40b3-a7e3-b214cca94503
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.