PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Case hardening development review (2001-2020)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the work is a complex review of methods applied industrially as case hardening. The paper contains an overview of scientific and development works on surface case hardening methods, especially carburising and quenching, described in the literature from 2001-2020. Design/methodology/approach: State-of-the-art was reviewed by a critical review of the world literature published in 2001-2022, including theoretical work, scientific research, and industry reports. An additional examination of the state of the art was conducted in terms of patent works. Findings: The period of 2001-2020 was a time of intensive work on the modernisation of case hardening techniques to improve the repeatability and uniformity of the produced layers and minimise deformations after hardening. Developing computing technologies have played a large part in this progress. New technologies have also been developed. Research limitations/implications: The review of papers and patent databases was limited to databases providing English-language content options. Practical implications: Case hardening is a crucial stage of steel heat treatment in almost every industrial branch: mechanical, tool, automotive, railway, and aviation. Originality/value: A synthetic review of case hardening methods was presented, particularly carburizing and quenching methods; it also analysed the possibilities and directions of their development.
Rocznik
Strony
70--85
Opis fizyczny
Bibliogr. 220 poz.
Twórcy
  • Institute of Material Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Łódź, Poland
Bibliografia
  • [1] Grand View Research, Heat Treating Market Size, Share & Trends Analysis Report By Material (Steel, Cast Iron), By Process (Case Hardening, Annealing), By Equipment, By Application, By Region, And Segment Forecasts, 2022-2030, San Francisco, 2021. Available from: www.grandviewresearch.com
  • [2] D. Herring, A case for acetylene based low pressure carburizing of gears, Thermal Processing for Gear Solutions 9 (2012) 40-45.
  • [3] P. Stratton, Carburising-looking back with a view to the future, Proceedings of 1st International Conference on Heat Treatment and Surface Engineering, Chennai, 2013, 1-12.
  • [4] M. Korecki, M. Bazel, M. Sut, Outstanding LPC case hardening of Pyrowear® Alloy 53, Industrial Heating 3 (2015).
  • [5] M. Korecki, E. Wołowiec-Korecka, M. Sut, A. Brewka, W. Stachurski, P. Zgórniak, Precision case hardening by low pressure carburizing (LPC) for high volume production, HTM Journal of Heat Treatment and Materials 72/3 (2017) 175-183. DOI: https://doi.org/10.3139/105.110325
  • [6] S. Todo, H. Imataka, H. Sueno, Development of application technology for vacuum carburizing, Nippon Steel and Sumitomo Metal Technical Report 116 (2017) 14-19.
  • [7] E. Wołowiec-Korecka, M. Korecki, W. Stachurski, J. Sawicki, A. Brewka, M. Sut, M. Bazel, System of single-piece flow case hardening for high volume production, Archives of Materials Science and Engineering 79/1 (2016) 37-44. DOI: https://doi.org/10.5604/18972764.1227661
  • [8] A. Rakhit, Heat treatment of gears: a practical guide for engineers, ASM International, Materials Park, 2000.
  • [9] K. Funatani, Heat treating R&D in Japan – status and challenges, Proceedings of the ASM Heat Treating Society’s 21st Conference, Indianapolis, 2001, 432- 440.
  • [10] R. Reynoldson, Heat treating R&D in Australia – status and challenges, Proceedings of the ASM Heat Treating Society’s 21st Conference, Indianapolis, 2001, 448- 457.
  • [11] S. Segerberg, Heat treating R&D in Sweden – status and challenges, Proceedings of the ASM Heat Treating Society’s 21st Conference, Indianapolis, 2001, 441- 445.
  • [12] K. Funatani, Heat treatment of automotove components: current status and future trends, Transactions of the Indian Institute of Metals 57/4 (2004) 381-396.
  • [13] R. Houghton, Heat Treating Technology Roadmap update 2006. Part I: Process & materials technology, Heat Treating Progress 5-6 (2006) 1-4.
  • [14] G. Pfaffmann, Heat Treating Technology Roadmap update 2006. Part III: Equipment and hardware materials technology, Heat Treating Progress 11-12 (2006) 1-4.
  • [15] S. Sikirica, D. Welling, Heat Treating Technology Roadmap update 2006. Part II: Energy and environmental technology, Heat Treating Progress 8-9 (2006) 1-4.
  • [16] American Society for Metals, Heat Treating Technology Roadmap update 2007. Vision 2020: Looking ahead, Heat Treating Progress 1-2 (2007) 1-2.
  • [17] American Society for Metals-Heat Treating Society, Metal Treating Institute, Office of Industrial Technology U.S. Department of Energy, Heat Treating Industry - Vision 2020, ASM International, Chicago, 1997.
  • [18] D.S. MacKenzie, Heat treatment of gears: control of residual stress and distortion, Houghton International Inc., 2007.
  • [19] D. Herring, A comprehensive guide to heat treatment, BNP Media, Industring Heating, 2018.
  • [20] B. Kruszyński, Z. Gawroński, J. Sawicki, P. Zgórniak, Enhancement of gears fatigue properties by modern thermo-chemical treatment and griding processes, Mechanics and Mechanical Engineering 12 (2008) 387- 395.
  • [21] D. Herring, Vacuum heat treatment: Principles, Practices, Applications, BNP Media II, Troy, 2012.
  • [22] D. Herring, Atmosphere heat treatment: Principles, Applications, Equipment. Volume I, BNP Media Group, 2014.
  • [23] T. Watanabe, T. Hirata, New concept and practical operation of carburizing and nitriding, Watanabe & Hirata, Japan, 2015.
  • [24] Z. Gawroński, A. Malasiński, J. Sawicki, A selection of the protective atmosphere eliminating the inter-operational copper plating step in the processing of gear wheels, Archives of Materials Science and Engineering 44/1 (2010) 51-57.
  • [25] F. Chen, L. Liu, Deep-hole carburization in a vacuum furnace by forced convection gas flow method, Materials Chemistry and Physics 82/3 (2003) 801-807. DOI: https://doi.org/10.1016/j.matchemphys.2003.07.010
  • [26] N. Ryzhov, A. Smirnov, R. Fakhurtdinov, Control of carbon saturation of the diffusion layer in vacuum carburizing of heat-resistant steels, Metal Science and Heat Treatment 46 (2004) 340-344. DOI: https://doi.org/10.1023/B:MSAT.0000048845.35526.09
  • [27] P. Kula, R. Pietrasik, K. Dybowski, Vacuum carburizing - process optimization, Journal of Materials Processing Technology 164-165 (2005) 876-881. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.145
  • [28] F. Otto, D. Herring, Vacuum carburizing of aerospace and automotive materials, Heat Treating Progress 1-2 (2005) 33-37.
  • [29] R. Gorockiewicz, The kinetics of low-pressure carburizing of alloy steels, Vacuum 86/4 (2011) 448- 451. DOI: https://doi.org/10.1016/j.vacuum.2011.09.006
  • [30] P. Kula, R. Pietrasik, K. Dybowski, S. Pawęta, E. Wołowiec, Properties of surface layers processed by a new, high-temperature vacuum carburizing technology with prenitriding – PreNitLPC®, Advanced Materials Research 452-453 (2012) 401-406. DOI: https://doi.org/10.4028/www.scientific.net/AMR.452- 453.401
  • [31] S. Wei, G. Wang, X. Zhao, X. Zhang, Y. Rong, Experimental study on vacuum carburizing process for low-carbon alloy steel, Journal of Materials Engineering and Performance 23 (2014) 545-550. DOI: https://doi.org/10.1007/s11665-013-0762-1
  • [32] K. Kawata, Atmosphere control during low-pressure carburizing, Journal of the Vacuum Society of Japan 60/3 (2017) 96-101. DOI: https://doi.org/10.3131/jvsj2.60.96
  • [33] Y. Song, J.-H. Kim, K.-S. Kim, S. Kim, P. Song, Effect of C2H2/H2 gas mixture ratio in direct low-temperature vacuum carburization, Metals 8/7 (2018) 493. DOI: https://doi.org/10.3390/met8070493
  • [34] E. Wołowiec-Korecka, M. Korecki, M. Sut, A. Brewka, P. Kula, Calculation of the mixture flow in a low-pressure carburizing process, Metals 9/4 (2019) 439. DOI: https://doi.org/10.3390/met9040439
  • [35] W. Chen, X. He, W. Yu, M. Wang, K. Yao, Microstructure, hardness, and tensile properties of vacuum carburizing gear steel, Metals 11/2 (2021) 300. DOI: https://doi.org/10.3390/met11020300
  • [36] R. Filip, K. Ochał, K. Gancarczyk, W. Nowak, B. Kościelniak, B. Wierzba, Characteristics of impulse carburization LPC process, Materials 14/15 (2021) 4269. DOI: https://doi.org/10.3390/ma14154269
  • [37] E. Wołowiec-Korecka, M. Korecki, L. Klimek, Influence of flow and pressure of carburising mixture on low-pressure carburising process efficiency, Coatings 12/3 (2022) 337. DOI: https://doi.org/10.3390/coatings12030337
  • [38] A. Fry, Nitrogen in iron, steel and special steel. A new surface hardening process, Stahl Und Eisen 4 (1923) 1271-1279 (in German).
  • [39] A. Fry, Process for hardening steel alloys, Krupp Steel, Germany, 1924.
  • [40] A. Machlet, Hardening of treatment of steel, iron, etc., US 1,092,925, 1914.
  • [41] D. Pye, Practical nitriding and ferritic nitrocarburizing, ASM International, Materials Park, Ohio, 2003.
  • [42] J. Mizera, R. Fillit, T. Wierzchoń, Residual stresses in nitrided layers produced on titanium alloys under glow discharge conditions, Journal of Materials Science Letters 17 (1998) 1291-1292. DOI: https://doi.org/10.1023/A:1006567810959
  • [43] T. Wierzchoń, I. Ulbin-Pokorska, K. Sikorski, J. Trojanowski, Properties of multicomponent surface layers produced on steels by modified plasma nitriding processes, Vacuum 53/3-4 (1999) 473-479. DOI: https://doi.org/10.1016/S0042-207X(99)00115-3
  • [44] T. Wierzchoń, I. Ulbin-Pokorska, K. Sikorski, Corrosion resistance of chromium nitride and oxynitride layers produced under glow discharge conditions, Surface and Coatings Technology 130/2-3 (2000) 274-279. DOI: https://doi.org/10.1016/S0257- 8972(00)00696-4
  • [45] E. Lunarska, K. Nikiforow, T. Wierzchoń, I. Ulbin- Pokorska, Effect of plasma nitriding on hydrogen behavior in electroplated chromium coating, Surface and Coatings Technology 145/1-3 (2001) 139-145. DOI: https://doi.org/10.1016/S0257-8972(01)01287-7
  • [46] J. Sobiecki, T. Wierzchoń, J. Rudnicki, The influence of glow discharge nitriding, oxynitriding and carbonitriding on surface modification of Ti–1Al–1Mn titanium alloy, Vacuum 64/1 (2001) 41-46. DOI: https://doi.org/10.1016/S0042-207X(01)00373-6
  • [47] T. Wierzchoń, E. Czarnowska, J. Morgiel, A. Sowińska, M. Tarnowski, A. Roguska, The importance of surface topography for the biological properties of nitrided diffusion layers produced on Ti6Al4V titanium alloy, Archives of Metallurgy and Materials 60/3 (2015) 2153-2159. DOI: https://doi.org/10.1515/amm- 2015-0361
  • [48] A. Smirnov, Y. Kuleshov, Calculations for nitriding with diluted ammonia, Metal Science and Heat Treatment 8 (1966) 395-403. DOI: https://doi.org/10.1007/BF00649318
  • [49] P. Kula, E. Wołowiec, R. Pietrasik, K. Dybowski, B. Januszewicz, Non-steady state approach to the vacuum nitriding for tools, Vacuum 88 (2013) 1-7. DOI: https://doi.org/10.1016/j.vacuum.2012.08.001
  • [50] P. Kula, R. Pietrasik, E. Wołowiec, B. Januszewicz, A. Rzepkowski, Low-pressure nitriding according to the FineLPN technology in multi-purpose vacuum furnaces, Advanced Materials Research 586 (2012) 230-234. DOI: https://doi.org/10.4028/www.scientific.net/AMR.586. 230
  • [51] L. Małdziński, Controlled nitriding using a ZeroFlow process, Heat Treating Progress 8 (2007) 53-55.
  • [52] L. Małdziński, M. Bazel, M. Korecki, A. Miliszewski, T. Przygoński, Industrial experiences with controlled nitriding using a ZeroFlow method, Heat Treating Progress 7-8 (2009) 19-22.
  • [53] L. Małdziński, J. Tacikowski, ZeroFlow gas nitriding of steels, in: E. Mittemeijer, M. Somers (eds), Thermochemical Surface Engineering of Steels, Woodhead Publishing, Oxford, 2015, 459-483. DOI: https://doi.org/10.1533/9780857096524.3.459
  • [54] L. Małdziński, J. Tacikowski, Concept of an economical and ecological process of gas nitriding of steel, HTM Journal of Heat Treatment and Materials 61/6 (2006) 296-302. DOI: https://doi.org/10.3139/105.100399 [55] N. Anichkina, V. Bogolyubov, V. Boiko, V. Denisov, I. Dukarevich, Comparison of methods of gas, ionic, and vacuum nitriding, Metal Science and Heat Treatment 31 (1989) 170-174. DOI: https://doi.org/10.1007/BF00715819
  • [56] J. Michalski, Using nitrogen availability as a nitriding process parameter, Industrial Heating 10 (2012) 63-68.
  • [57] J. Michalski, K. Burdyński, P. Wach, Z. Łataś, Nitrogen availability of nitriding atmosphere in controlled gas nitriding processes, Archives of Metallurgy and Materials 60/2 (2015) 747-754. DOI: https://doi.org/10.1515/amm-2015-0201
  • [58] J. Michalski, E. Wołowiec-Korecka, A study of the parameters of nitriding processes. Part 1, Metal Science and Heat Treatment 61 (2019) 183-190. DOI: https://doi.org/10.1007/s11041-019-00398-y
  • [59] J. Michalski, E. Wołowiec-Korecka, A study of the parameters of nitriding processes. Part 2, Metal Science and Heat Treatment 61 (2019) 351-359. DOI: https://doi.org/10.1007/s11041-019-00429-8
  • [60] M. Yang, R. Sisson Jr., Alloy effects on the gas nitriding process, Journal of Materials Engineering and Performance. 23 (2014) 4181-4186. DOI: https://doi.org/10.1007/s11665-014-1187-1
  • [61] L. Barrallier, Classical nitriding of heat treatable steel, in: E.J. Mittemeijer, M.A.J. Somers (eds), Thermochemical Surface Engineering of Steels, Woodhead Publishing, 2015, 393-412. DOI: https://doi.org/10.1533/9780857096524.3.393
  • [62] K. Cho, K. Song, S.H. Oh, Y.-K. Lee, W. Lee, Enhanced surface hardening of AISI D2 steel by atomic attrition during ion nitriding, Surface and Coatings Technology 251 (2014) 115-121. DOI: https://doi.org/10.1016/j.surfcoat.2014.04.011
  • [63] D. Manova, D. Hirsch, J. Gerlach, S. Mändl, H. Neumann, B. Rauschenbach, In situ investigation of phase formation during low energy ion nitriding of Ni80Cr20 alloy, Surface and Coatings Technology 259/C (2014) 434-441. DOI: https://doi.org/10.1016/j.surfcoat.2014.10.054
  • [64] I. Rosales, H. Martinez, R. Guardian, Mechanical performance of thermally post-treated ion-nitrided
  • steels, Applied Surface Science 371 (2016) 576-582. DOI: https://doi.org/10.1016/j.apsusc.2016.03.048
  • [65] D. Hoche, J. Kaspar, P. Schaaf, Laser nitriding and carburization of materials, in: J. Lawrence, C. Dowding, D. Waugh, J. Griffiths (eds), Laser Surface Engineering, Woodhead Publishing, Sawston, 2015, 33-58. DOI: https://doi.org/10.1016/B978-1-78242- 074-3.00002-7
  • [66] D. Jordan, H. Antes, V. Osterman, T. Jones, Low torr-range vacuum nitriding of 4140 steel, Heat Treating Progress 3-4 (2008) 33-38.
  • [67] D. Jordan, Vacuum solution nitriding of martensitic stainless steel holds promise, Advanced Materials and Processes 171/1 (2013) 28-30.
  • [68] J. Sawicki, M. Górecki, Ł. Kaczmarek, Z. Gawroński, K. Dybowski, R. Pietrasik, W. Pawlak, Increasing the durability of pressure dies by modern surface treatment methods, Chiang Mai Journal of Science 40 (2013) 886-897.
  • [69] Z. Zhou, M. Dai, Z. Shen, J. Hu, Effect of D.C. electric field on salt bath nitriding for 35 steel and kinetics analysis, Journal of Alloys and Compounds 623 (2015) 261-265. DOI: https://doi.org/10.1016/j.jallcom.2014.10.146
  • [70] G. Perez, Low-pressure nitriding, Industrial Heating 73 (2006) 67-70.
  • [71] M. Perez, F. Belzunce, A comparative study of salt-bath nitrocarburizing and gas nitriding followed by post-oxidation used as surface treatments of H13 hot forging dies, Surface and Coatings Technology 305 (2016) 146-157. DOI: https://doi.org/10.1016/j.surfcoat.2016.08.003
  • [72] K. Przybyłowicz, Theory and practice of steel boriding, Kielce University of Technology Publishing House, Kielce, 2001 (in Polish).
  • [73] M. Kulka, Current trends in boriding: Techniques, Springer, Cham, 2019. DOI: https://doi.org/10.1007/978-3-030-06782-3
  • [74] M. Kulka, N. Makuch, A. Pertek, A. Piasecki, An alternative method of gas boriding applied to the formation of borocarburized layer, Materials Characterization 72 (2012) 59-67. DOI: https://doi.org/10.1016/j.matchar.2012.07.009
  • [75] M. Kulka, D. Panfil, J. Michalski, P. Wach, The effects of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel, Optics and Laser Technology 82 (2016) 203-219. DOI: https://doi.org/10.1016/j.optlastec.2016.02.021
  • [76] M. Kulka, D. Mikołajczak, N. Makuch, P. Dziarski, D. Przestacki, D. Panfil-Pryka, A. Piasecki, A. Miklaszewski, Laser surface alloying of austenitic 316L steel with boron and some metallic elements: Microstructure, Materials 13/21 (2020) 4852. DOI: https://doi.org/10.3390/ma13214852
  • [77] E. Wołowiec, Computer design of heat treatment processes, Lodz University of Technology Publishing House, Lodz, 2013 (in Polish).
  • [78] G. Totten, Heat treating in 2020: What are the most critical issues and - What will the future look like?, Heat Treatment of Metals 31/1 (2004) 1-4.
  • [79] M. Somers, IFHTSE Global 21: heat treatment and surface engineering in the twenty-first century Part 14 – Development of compound layer during nitriding and nitrocarburising; current understanding and future challenges, International Heat Treatment and Surface Engineering 5/1 (2011) 7-16. DOI: https://doi.org/10.1179/174951411X12956207253429
  • [80] J. Sawicki, K. Dybowski, P. Zgórniak, Effect of stages of vacuum carburizing on deformations in splines of steels 16MnCr5, AMS6265 and 17CrNiMo7-6, Metal Science and Heat Treatment 62 (2021) 572-576. DOI: https://doi.org/10.1007/s11041-021-00605-9
  • [81] T. Lubben, H.-W. Zoch, Distortion of heat treated components - basics and examples for reduction, Proceedings of 3rd International Conference on Heat Treatment and Surface Engineering in Automotive Applications, Prague, 2016.
  • [82] T. Lubben, F. Hoffmann, H.-W. Zoch, Distortion Engineering: basics and application to practical examples of bearing races, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas, (eds), Comprehensive Materials Processing, Elsevier, 2014, 299-344. DOI: https://doi.org/10.1016/B978-0-08-096532-1.01210-3
  • [83] J. Sawicki, K. Krupanek, W. Stachurski, V. Buzalski, Algorithm scheme to simulate the distortions during gas quenching in a single-piece flow technology, Coatings 10/7 (2020) 694. DOI: https://doi.org/10.3390/coatings10070694
  • [84] Z. Li, B. Ferguson, V. Nemkov, R. Goldstein, J. Jackowski, D. Fett, Modeling distortion and residual stresses of an induction hardened truck axle, Advanced Materials and Processes 171/9 (2013) 62-64.
  • [85] Z. Li, R.V. Grandhi, R. Srinivasan, Distortion minimization during gas quenching process, Journal of Materials Processing Technology 172/2 (2006) 249-257. DOI: https://doi.org/10.1016/j.jmatprotec.2005.10.018
  • [86] K. Krupanek, J. Sawicki, V. Buzalski, Numerical simulation of phase transformation during gas quenching after low pressure carburizing, IOP Conference Series: Materials Science and Engineering 743 (2020) 012047. DOI: https://doi.org/10.1088/1757- 899X/743/1/012047
  • [87] M. Korecki, E. Wołowiec-Korecka, D. Glenn, Single-piece, high-volume, low-distortion case hardening of gears, Proceeding of AGMA Fall Technical Meeting 2015, AGMA, Detroit, 2015, 1-9.
  • [88] A. Madej, A. Brewka, E. Wołowiec-Korecka, Study on homogeneity and repeatability of single-piece flow carburizing system, Journal of Achievements in Materials and Manufacturing Engineering 84/2 (2017) 68-75. DOI: https://doi.org/10.5604/01.3001.0010.7783
  • [89] M. Korecki, E. Wołowiec-Korecka, A. Brewka, P. Kula, L. Klimek, J. Sawicki, Single-piece flow case hardening can be worked into in-line manufacturing, Thermal Processing for Gear Solutions 9-10 (2017) 42-48.
  • [90] D.S. MacKenzie, Advances in Quenching-A Discussion of Present and Future Technologies, Proceedings of the 22nd Heat Treating Society Conference and the 2nd International Surface Engineering Congress, Indianapolis, Indiana, USA, 2003, 228.
  • [91] B. Ferguson, D.S. MacKenzie, Effect of oil condition on pinion gear distortion, Proceedings from the 6th International Quenching and Control of Distortion Conference Including the 4th International Distortion Engineering Conference, Chicago, USA, 2012, 320-328.
  • [92] D.S. MacKenzie, Understanding the quenchant report... safety, performance and oxidation, Proceedings of the Furnaces North America 2022 Conference “FNA 2022”, Indianapolis, 2022.
  • [93] D. Herring, S. Balme, Oil quenching technologies for gears, Gear Solutions July (2007) 22-30.
  • [94] F. Krause, S. Schüttenberg, U. Fritsching, Modelling and simulation of flow boiling heat transfer, International Journal of Numerical Methods for Heat and Fluid Flow 20/3 (2010) 312-331. DOI: https://doi.org/10.1108/09615531011024066
  • [95] D.S. MacKenzie, I. Lazerev, Care and Maintenance of Quench Oils, Houghton International Inc., 2010.
  • [96] A. Lotfi, E. Lakzian, Entropy generation analysis for film boiling: A simple model of quenching, The European Physical Journal Plus 131 (2016) 123. DOI: https://doi.org/10.1140/epjp/i2016-16123-6
  • [97] A. Surajudeen Adekunle, A. Akanni Adeleke, P. Pelumi Ikubanni, K. Adekunle Adebiyi, O. Adekunle Adewuyi, Effectiveness of biodegradable oils as quenching media for commercial aluminium, Materiali in Tehnologije / Materials and technology 54/5 (2020) 607-612. DOI: https://doi.org/10.17222/mit.2019.186
  • [98] J. Hájek, Z. Dlouha, V. Průcha, Comparison of industrial quenching oils, Metals 11/2 (2021) 250. DOI: https://doi.org/10.3390/met11020250
  • [99] J. Liu, J. Li, Y. Tian, Y. Li, Z. Wang, Effects of vacuum oil quenching on distortion of 42CrMo Navy C-ring, Materials Science and Technology 38/18 (2022) 1659- 1666. DOI: https://doi.org/10.1080/02670836.2022.2098622
  • [100] G. Totten, B. Liscic, N. Kobasko, S. Han, Y. Sun, Advances in polymer quenching technology, Proceedings of International Automotive Heat Treating Conference, Puerto Vallarta, 1998, 37-44.
  • [101] M. Przyłęcka, W. Gęstwa, The possibility of correlation of hardening power for oils and polymers of quenching mediums, Advances in Materials Science and Engineering 2009 (2009) 843281. DOI: https://doi.org/10.1155/2009/843281
  • [102] L. Chen, F. Zhu, Z. Zhang, P. Hu, A. Wang, Y. Ling, W. Liang, X. Suo, X. Zhang, An aqueous polymer quenching medium for instantaneous thermal shock cooling rate study of ceramic materials, Journal of Alloys and Compounds. 724 (2017) 234-239. DOI: https://doi.org/10.1016/j.jallcom.2017.07.032
  • [103] T. Arikawa, R. Imamura, T. Matsumiya, K. Okita, M. Matsuda, Study of polymer quenching for application to large forged steel products, Research and Development Kobe Steel Engineering Reports 70 (2020) 68-74.
  • [104] C. Ramesha, P. Rajendra, T. Anilkumar, M. Nagaral, V. Auradi, Fatigue analysis of a forged medium carbon low alloy steel quenched in a polymer for vehicle structures applications, International Journal of Vehicle Structures and Systems14/1 (2022) 1-4. DOI: https://doi.org/10.4273/ijvss.14.1.01
  • [105] M. Aronov, N. Kobasko, J. Powell, Basic principals, properties and metallurgy of intensive quenching, Journal of Commercial Vehicles 111 (2002) 37-44. DOI: https://doi.org/10.4271/2002-01-1338
  • [106] M. Przyłęcka, W. Gęstwa, N. Kobasko, G. Totten, M. Aronov, J. Powell, Intensive quenching - carburizing process, Proceedings of the 12th International Scientific Conference Achievements in Mechanical and Materials Engineering “AMME 2003”, Gliwice- Cracow-Zakopane, 2003, 749-754.
  • [107] M. Aronov, N. Kobasko, J. Powell, Industrial-scale intensive quenching process for tool products commercialization, Edison Material Technology Center (EMTEC), 2005.
  • [108] L. Canale, N. Kobasko, G. Totten, Intensive quenching Part 1 – What is it?, International Heat Treatment and Surface Engineering 1/1 (2007) 30-33. DOI: https://doi.org/10.1179/174951407X169196
  • [109] B.L. Ferguson, Z. Li, N. Kobasko, M. Aronov, J. Powell, Limited hardenability steels and intensive quenching, Proceedings of ASM Heat Treating Conference, Indianapolis, 2009.
  • [110] M. Aronov, N. Kobasko, J. Powell, G. Totten, Intensive quenching of steel parts, in: J. Dossett, G. Totten (eds), Steel Heat Treating Fundamentals and Processes, ASM International, 2013, 198-212. DOI: https://doi.org/10.31399/asm.hb.v04a.a0005774
  • [111] M. Aronov, N. Kobasko, J. Powell, B. Andreski, B. O’Rourke, Intensive quenching processes basic principles, applications and commercialization, Proceedings of European Conference on Heat Treatment, Munich, 2014.
  • [112] J. Titus, Intensive quenching. Intensive quenching calls for very high cooling rates, Thermal Processing for Gear Solutions 9 (2014) 18-19.
  • [113] M. Korecki, Theoretical and experimental methods of supporting the design of universal, single-chamber vacuum furnaces, PhD Thesis, Lodz University of Technology, Lodz, 2008 (in Polish).
  • [114] B. Edenhofer, J. Bouwmann, Progress in design and use of vacuum furnaces with high pressure gas quenching systems, Industrial Heating 2 (1988) 333- 336.
  • [115] V. Heuer, D.R. Faron, D. Bolton, M. Lifshits, K. Loeser, Distortion control of transmission components by optimized high pressure gas quenching, Journal of Materials Engineering and Performance 22 (2013) 1833-1838. DOI: https://doi.org/10.1007/s11665-013-0547-6
  • [116] P. Stratton, I. Shedletsky, M. Lee, Gas quenching with helium, Solid State Phenomena 118 (2006) 221- 226. DOI: https://doi.org/10.4028/www.scientific.net/SSP.118. 221
  • [117] O. Macchion, S. Zahrai, J.W. Bouwman, Heat transfer from typical loads within gas quenching furnace, Journal of Materials Processing Technology. 172/3 (2006) 356-362. DOI: https://doi.org/10.1016/j.jmatprotec.2005.10.017
  • [118] D. Herring, A review of gas quenching from the perspective of the heat transfer coefficient, Industrial Heating 2 (2006) 67-72.
  • [119] N. Lior, The cooling process in gas quenching, Journal of Materials Processing Technology 155-156 (2004) 1881-1888. DOI: https://doi.org/10.1016/j.jmatprotec.2004.04.279
  • [120] M. Korecki, J. Olejnik, Z. Szczerba, M. Bazel, Single-chamber HPGQ vacuum furnace with quenching efficiency comparable to oil, Industrial Heating 9 (2009) 73-77.
  • [121] M. Korecki, P. Kula, J. Olejnik, New capabilities in HPGQ vacuum furnaces, Industrial Heating 3 (2011).
  • [122] O. Karabelchtchikova, R. Sisson, Carbon diffusion in steels: A numerical analysis based on direct integration of the flux, Journal of Phase Equilibria and Diffusion 27 (2006) 598-604. DOI: https://doi.org/10.1007/BF02736561
  • [123] O. Karabelchtchikova, Fundamentals of mass transfer in gas carburizing, PhD Thesis, Worcester Polytechnic Institute, Worcester, 2007.
  • [124] M. Lohrmann, W. Gräfen, D. Herring, J. Greene, Acetylene vacuum carburising (AvaC) as the key to the integration of the case-hardening process into the production line, Heat Treatment of Metals 29 (2002) 39-43.
  • [125] H. Antes, Calculating the gas flow rate for vacuum carburization, Heat Treating Progress 8 (2005) 51-53.
  • [126] P. Kula, E. Wołowiec, R. Pietrasik, K. Dybowski, L. Klimek, The precipitation and dissolution of alloy iron carbides in vacuum carburization processes for automotive and aircraft applications – Part I, Advanced Materials Research 486 (2012) 297-302. DOI: https://doi.org/10.4028/www.scientific.net/AMR.48 6.297
  • [127] H. Ikehata, K. Tanaka, H. Takamiya, H. Mizuno, T. Shimada, Modeling growth and dissolution kinetics of grain-boundary cementite in cyclic carburizing, Metallurgical and Materials Transactions A 44 (2013) 3484-3493. DOI: https://doi.org/10.1007/s11661-013-1722-y
  • [128] E. Wołowiec-Korecka, Modeling methods for gas quenching, low-pressure carburizing and low-pressure nitriding, Engineering Structures 177 (2018) 489-505. DOI: https://doi.org/10.1016/j.engstruct.2018.10.003
  • [129] J. Guo, X. Deng, H. Wang, L. Zhou, Y. Xu, D. Ju, Modeling and simulation of vacuum low pressure carburizing process in gear steel, Coatings 11/8 (2021) 1003. DOI: https://doi.org/10.3390/coatings11081003
  • [130] A. Waghode, N. Hanspal, I. Shigidi, V. Nassehi, K. Hellgardt, Computer modelling and numerical analysis of hydrodynamics and heat transfer in non-porous catalytic reactor for the decomposition of ammonia, Chemical Engineering Science 60/21 (2005) 5862-5877. DOI: https://doi.org/10.1016/j.ces.2005.05.019
  • [131] U. Afzaal, Modeling of gas nitriding using artificial neural networks, MSc Thesis, McMaster University, Hamilton, Ontario, 2006.
  • [132] D. Lipiński, J. Ratajski, Modeling of microhardness profile in nitriding processes using artificial neural network, in: D.S. Huang, L. Heutte, M. Loog, (eds), Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, ICIC 2007, Lecture Notes in Computer Science 4682, Springer, Berlin, Heidelberg. 245-252. DOI: https://doi.org/10.1007/978-3-540-74205-0_27
  • [133] E. Wołowiec, P. Kula, B. Januszewicz, M. Korecki, Mathematical modelling the low-pressure nitriding process, Applied Mechanics and Materials 421 (2013) 377-383. DOI: https://doi.org/10.4028/www.scientific.net/AMM.42 1.377
  • [134] J. Sawicki, P. Siedlaczek, A. Staszczyk, Finite-element analysis of residual stresses generated under nitriding process: a three-dimensional model, Metal Science and Heat Treatment 59 (2018) 799-804. DOI: https://doi.org/10.1007/s11041-018-0229-y
  • [135] E. Wołowiec-Korecka, P. Kula, S. Pawęta, R. Pietrasik, J. Sawicki, A. Rzepkowski, Neural computing for a low-frictional coatings manufacturing of aircraft engines’ piston rings, Neural Computing and Applications 31 (2019) 4891- 4901. DOI: https://doi.org/10.1007/s00521-018- 03987-9
  • [136] J. Sawicki, P. Siedlaczek, A. Staszczyk, Fatigue life predicting for nitrided steel - finite element analysis, Archives of Metallurgy and Materials 63/2 (2018) 917-923. DOI: https://doi.org/10.24425/122423
  • [137] J. Trzaska, Calculation of the steel hardness after continuous cooling, Archives of Materials Science and Engineering 61/2 (2013) 87–92.
  • [138] M. Kianezhad, S. Sajjadi, H. Vafaeenezhad, A numerical approach to the prediction of hardness at different points of a heat-treated steel, Journal of Materials Engineering and Performance 24 (2015) 1516-1521. DOI: https://doi.org/10.1007/s11665- 015-1433-1
  • [139] B. Ferguson, Effective technical collaboration in heat treatment process modelling: a case study, International Heat Treatment and Surface Engineering 6/2 (2012) 61-66. DOI: https://doi.org/10.1179/1749514812Z.00000000017
  • [140] B. Ferguson, Z. Li, A. Freborg, Modeling heat treatment of steel parts, Computational Materials Science 34/3 (2005) 274-281. DOI: https://doi.org/10.1016/j.commatsci.2005.02.005
  • [141] K. Krupanek, A. Staszczyk, J. Sawicki, P. Byczkowska, The impact of nozzle configuration on the heat transfer coefficient, Archives of Materials Science and Engineering 90/1 (2018) 16-24. DOI: https://doi.org/10.5604/01.3001.0012.0609
  • [142] T. Inoue, K. Arimoto, Development and implementation of CAE system HEARTS for heat treatment simulation based on metallo-thermomechanics, Journal of Materials Engineering and Performance 6 (1997) 51-60. DOI: https://doi.org/10.1007/s11665-997-0032-1
  • [143] M. Yaakoubi, M. Kchaou, F. Dammak, Simulation of heat treatment and materials with the use of the Abaqus software, Metal Science and Heat Treatment 55 (2013) 386-392. DOI: https://doi.org/10.1007/s11041-013-9641-5
  • [144] Southwest Research Institute, SYSWELD. A predictive model for heat treat distortion, Southwest Research Institute, San Antonio, 1992.
  • [145] D. Pont, T. Guichard, Sysweld®: welding and heat treatment modelling tools, in: S.N. Atluri, G. Yagawa, T. Cruse (eds), Computational Mechanics ’95, Springer, Berlin, Heidelberg, 1995, 248-253. DOI: https://doi.org/10.1007/978-3-642-79654-8_41
  • [146] B. Ferguson, G. Petrus, T. Pattok, A software tool to simulate quenching of alloy steels, Proceedings of the 3rd International Conference on Quenching and Control of Distortion, 1999, 188-200. [147] C. Li, Upcoming DANTE Software Improvements, 2019, 3.
  • [148] D. Ju, C. Liu, T. Inoue, Numerical modeling and simulation of carburized and nitrided quenching process, Journal of Materials Processing Technology 143-144 (2003) 880-885. DOI: https://doi.org/10.1016/S0924-0136(03)00378-9
  • [149] D. Ju, Y. Ito, T. Inoue, Simulation and verification of residual stresses and distortion in carburizing-quenching process of a gear shaft, Proceedings of the 4th International Conference on Quenching and Control of Distortion, 2003, 291-296.
  • [150] Scientific Forming Technologies Corp., DEFORM Users Manual, Scientific Forming Technologies Corporation, Columbus, 1999.
  • [151] Virtual Heat Treating using DEFORM-HT, Aircraft Engineering and Aerospace Technology 70/4 (1998). DOI: https://doi.org/10.1108/aeat.1998.12770dab.015
  • [152] K. Arimoto, D. Lambert, G. Li, A. Arvind, W. Wu, Development of heat treatment simulation system DEFORMTM-HT, Proceedings of the 18th Conference on Heat Treating, 1998, 639-654.
  • [153] C. Liu, X. Xu, Z. Liu, A FEM modeling of quenching and tempering and its application in industrial engineering, Finite Elements in Analysis and Design 39/11 (2003) 1053-1070. DOI: https://doi.org/10.1016/S0168-874X(02)00156-7
  • [154] S.-J. Lee, D. Matlock, C. van Tyne, Comparison of two finite element simulation codes used to model the carburizing of steel, Computational Materials Science 68 (2013) 47-54. DOI: https://doi.org/10.1016/j.commatsci.2012.10.007
  • [155] S.C. Cha, S.-H. Hong, M.-Y. Kim, J. Park, J.-H. Shim, W.-S. Jung, M. Rath, E. Kozeschnik, CALPHAD-based alloy design for advanced automotive steels – Part II: Compositional and microstructural modification for advanced carburizing steels, Calphad 54 (2016) 172-180. DOI: https://doi.org/10.1016/j.calphad.2016.04.008
  • [156] R. Mukai, T. Matsumoto, D. Ju, T. Suzuki, H. Saito, Y. Ito, Modeling of numerical simulation and experimental verification for carburizing-nitriding quenching process, Transactions of Nonferrous Metals Society of China 16/S2 (2006) s566-s571. DOI: https://doi.org/10.1016/S1003-6326(06)60257- 4
  • [157] P. Cavaliere, A. Perrone, A. Silvello, Steel nitriding optimization through multi-objective and FEM analysis, Journal of Computational Design and Engineering 3/1 (2016) 71-90. DOI: https://doi.org/10.1016/j.jcde.2015.08.002
  • [158] I. Elkatatny, Y. Morsi, A. Blicblau, S. Das, E. Doyle, Numerical analysis and experimental validation of high pressure gas quenching, International Journal of Thermal Sciences 42/4 (2003) 417-423. DOI: https://doi.org/10.1016/S1290-0729(02)00042-X
  • [159] J. Mackerle, Finite element analysis and simulation of quenching and other heat treatment processes: a bibliography (1976-2001), Computational Materials Science 27/3 (2003) 313-332. DOI: https://doi.org/10.1016/S0927-0256(03)00038-7
  • [160] Y.-B. Dong, W.-Z. Shao, L.-X. Lu, J.-T. Jiang, L. Zhen, Numerical Simulation of Residual Stress in an Al-Cu Alloy Block During Quenching and Aging, Journal of Materials Engineering and Performance 24 (2015) 4928-4940. DOI: https://doi.org/10.1007/s11665-015-1758-9
  • [161] B. Gao, H. Li, Y. Chen, J. Dong, Numerical analysis and structure improvement for the corrosion and cracking of the mixing tee for the quenching gas of hydrogen from coal, Procedia Engineering 130 (2015) 1246-1257. DOI: https://doi.org/10.1016/j.proeng.2015.12.206
  • [162] S. Malinov, W. Sha, Z. Guo, Application of artificial neural network for prediction of time–temperature– transformation diagrams in titanium alloys, Materials Science and Engineering: A 283/1-2 (2000) 1-10. DOI: https://doi.org/10.1016/S0921-5093(00)00746- 2
  • [163] T. Malinova, S. Malinov, N. Pantev, Simulation of microhardness profiles for nitrocarburized surface layers by artificial neural network, Surface and Coatings Technology 135/2-3 (2001) 258-267. DOI: https://doi.org/10.1016/S0257-8972(00)00991-9
  • [164] J. Trzaska, L.A. Dobrzański, Application of neural networks for designing the chemical composition of steel with the assumed hardness after cooling from the austenitising temperature, Journal of Materials Processing Technology 164-165 (2005) 1637-1643. DOI: https://doi.org/10.1016/j.jmatprotec.2005.01.014
  • [165] X. Liujie, X. Jiandong, W. Shizhong, P. Tao, Z. Yongzhen, L. Rui, Artificial neural network prediction of heat-treatment hardness and abrasive wear resistance of High-Vanadium High-Speed Steel (HVHSS), Journal of Materials Science 42 (2007) 2565-2573. DOI: https://doi.org/10.1007/s10853- 006-1278-y
  • [166] L. Xu, J. Xing, S. Wei, Y. Zhang, R. Long, Artificial neural network prediction of retained austenite content and impact toughness of high-vanadium high-speed steel (HVHSS), Materials Science and Engineering: A 433/1-2 (2006) 251-256. DOI: https://doi.org/10.1016/j.msea.2006.06.125
  • [167] L. Xu, J. Xing, S. Wei, Y. Zhang, R. Long, Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks, Materials and Design 28/5 (2007) 1425-1432. DOI: https://doi.org/10.1016/j.matdes.2006.03.022
  • [168] L. Xu, J. Xing, S. Wei, T. Peng, Y. Zhang, L. R, Artificial neural network prediction of heat-treatment hardness and abrasive wear resistance of high-vanadium high-speed steel, Journal of Materials Science 42 (2007) 2565-2573. DOI: https://doi.org/10.1007/s10853-006-1278-y
  • [169] K. Genel, Use of artificial neural network for prediction of ion nitrided case depth in Fe–Cr alloys, Materials and Design 24/3 (2003) 203-207. DOI: https://doi.org/10.1016/S0261-3069(03)00002-5
  • [170] T. Filetin, I. Žmak, D. Novak, Nitriding parameters analized by neural network and genetic algorithm, Journal de Physique IV France 120 (2004) 355-362. DOI: https://doi.org/10.1051/jp4:2004120040
  • [171] T. Filetin, I. Zmak, D. Novak, Determining nitriding parameters with neural networks, Journal of ASTM International 2/5 (2005) 133-143. DOI: https://doi.org/10.1520/JAI12213
  • [172] A. Zhecheva, S. Malinov, W. Sha, Simulation of microhardness profiles of titanium alloys after surface nitriding using artificial neural network, Surface and Coatings Technology 200/7 (2005) 2332-2342. DOI: https://doi.org/10.1016/j.surfcoat.2004.10.018
  • [173] M. Kosikowski, Z. Suszyński, R. Olik, J. Ratajski, T. Suszko, The application of artificial neural networks and evolutionary algorithm for the designing of gas nitriding process, Intelligent Information and Engineering Systems 13 (2009) 33-39.
  • [174] A. Yetim, M. Codur, M. Yazici, Using of artificial neural network for the prediction of tribological properties of plasma nitrided 316L stainless steel, Materials Letters 158 (2015) 170-173. DOI: https://doi.org/10.1016/j.matlet.2015.06.015
  • [175] P. Noori Banu, S. Devaki Rani, Knowledge-based artificial neural network model to predict the properties of alpha+ beta titanium alloys, Journal of Mechanical Science and Technology 30 (2016) 3625- 3631. DOI: https://doi.org/10.1007/s12206-016- 0723-3
  • [176] P. Kula, E. Wołowiec, The application of artificial intelligence to modelling and evaluation of machines parts, in: A. Grzech, P. Świątek, K. Brzostowski (eds), Applications of Systems Science, EXIT, Warsaw, 2010, 315-320.
  • [177] Y.V.R.K. Prasad, T. Seshacharyulu, Modelling of hot deformation for microstructural control, International Materials Reviews 43/6 (1998) 243-258. DOI: https://doi.org/10.1179/imr.1998.43.6.243
  • [178] A. Sugianto, M. Narazaki, M. Kogawara, A. Shirayori, S. Kim, S. Kubota, Numerical simulation and experimental verification of carburizing-quenching process of SCr420H steel helical gear, Journal of Materials Processing Technology 209/7 (2009) 3597-3609. DOI: https://doi.org/10.1016/j.jmatprotec.2008.08.017
  • [179] A.D. da Silva, T.A. Pedrosa, J.L. Gonzalez-Mendez, X. Jiang, P.R. Cetlin, T. Altan, Distortion in quenching an AISI 4140 C-ring – Predictions and experiments, Materials and Design 42 (2012) 55-61. DOI: https://doi.org/10.1016/j.matdes.2012.05.031
  • [180] W. Chen, Y. Guan, Z. Wang, Modeling of flow stress of high titanium content 6061 aluminum alloy under hot compression, Journal of Materials Engineering and Performance 25 (2016) 4081-4088. DOI: https://doi.org/10.1007/s11665-016-2224-z
  • [181] D. Kim, H. Cho, W. Lee, K. Cho, Y. Cho, S. Kim, H. Han, A finite element simulation for carburizing heat treatment of automotive gear ring incorporating transformation plasticity, Materials and Design 99 (2016) 243-253. DOI: https://doi.org/10.1016/j.matdes.2016.03.047
  • [182] D. Kim, Y. Cho, S. Kim, W. Lee, M. Lee, H. Han, A numerical model for vacuum carburization of an automotive gear ring, Metals and Materials International 17 (2011) 885-890. DOI: https://doi.org/10.1007/s12540-011-6004-x
  • [183] N.-K. Kim, K.-Y. Bae, Analysis of deformation in the carburizing-quenching heat treatment of helical gears made of SCM415H steel, International Journal of Precision Engineering and Manufacturing 16 (2015) 73-79. DOI: https://doi.org/10.1007/s12541-015- 0009-1
  • [184] S. Thibault, C. Sidoroff, S. Jegou, L. Barrallier, G. Michel, A simple model for hardness and residual stress profiles prediction for low-alloy nitrided steel, based on nitriding-induced tempering effects, HTM Journal of Heat Treatment and Materials 73/5 (2018) 235-245. DOI: https://doi.org/10.3139/105.110360
  • [185] G. Song, X. Liu, G. Wang, X. Xu, Numerical simulation on carburizing and quenching of gear ring, Journal of Iron and Steel Research, International 14/6 (2007) 47-52. DOI: https://doi.org/10.1016/S1006- 706X(07)60089-2
  • [186] O. Karabelchtchikova, I. Rivero, S. Hsiang, Modeling of residual stress distribution in D2 steel via grinding dynamics using a second-order damping system, Journal of Materials Processing Technology 198/1-3 (2008) 313-322. DOI: https://doi.org/10.1016/j.jmatprotec.2007.07.006
  • [187] A. Galdikas, T. Moskalioviene, Modeling of stress induced nitrogen diffusion in nitrided stainless steel, Surface and Coatings Technology 205/12 (2011) 3742-3746. DOI: https://doi.org/10.1016/j.surfcoat.2011.01.040
  • [188] Z. Li, A.M. Freborg, B.D. Hansen, T.S. Srivatsan, Modeling the Effect of Carburization and Quenching on the Development of Residual Stresses and Bending Fatigue Resistance of Steel Gears, Journal of Materials Engineering and Performance 22 (2013) 664-672. DOI: https://doi.org/10.1007/s11665-012- 0306-0
  • [189] P. Depouhon, J. Sprauel, M. Mailhé, E. Mermoz, Mathematical modeling of residual stresses and distortions induced by gas nitriding of 32CrMoV13 steel, Computational Materials Science 82 (2014) 178-190. DOI: https://doi.org/10.1016/j.commatsci.2013.09.043
  • [190] S. Lipa, J. Sawicki, E. Wołowiec, K. Dybowski, P. Kula, Method of determining the strain hardening of carburized elements in Ansys environment, Solid State Phenomena 240 (2015) 74-80. DOI: https://doi.org/10.4028/www.scientific.net/SSP.240. 74
  • [191] J. Sawicki, B. Kruszyński, R. Wójcik, The influence of grinding conditions on the distribution of residual stress in the surface layer of 17CrNi6-6 steel after carburizing, Advances in Science and Technology Research Journal 11/2 (2017) 17-22. DOI: https://doi.org/10.12913/22998624/67671
  • [192] H. Weil, L. Barrallier, S. Jégou, N. Caldeira- Meulnotte, G. Beck, Optimization of gaseous nitriding of carbon iron-based alloy based on fatigue resistance modelling, International Journal of Fatigue 110 (2018) 238-245. DOI: https://doi.org/10.1016/j.ijfatigue.2018.01.022
  • [193] Z. Gawroński, J. Sawicki, Technological surface layer selection for small module pitches of gear wheels working under cyclic contact loads, Materials Science Forum 513 (2006) 69-74. DOI: https://doi.org/10.4028/www.scientific.net/MSF.513 .69
  • [194] M. Larsson, M. Anheden, L. Uhlir, Roadmap 2015 to 2025 biofuels for low-carbon steel industry, Research Institutes of Sweden, Gothenburg, 2014.
  • [195] M. Quader, S. Ahmed, R. Ghazilla, S. Ahmed, M. Dahari, A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing, Renewable and Sustainable Energy Reviews 50 (2015) 594-614. DOI: https://doi.org/10.1016/j.rser.2015.05.026
  • [196] Y. Junjie, Progress and future of breakthrough low-carbon steelmaking technology (ULCOS) of EU, International Journal of Mineral Processing and Extractive Metallurgy 3/2 (2018) 15-22. DOI: https://doi.org/10.11648/j.ijmpem.20180302.11
  • [197] L.A. Dobrzański, Role of materials design in maintenance engineering in the context of industry 4.0 idea, Journal of Achievements in Materials and Manufacturing Engineering 96/1 (2019) 12-49. DOI: https://doi.org/10.5604/01.3001.0013.7932
  • [198] S. Wang, J. Wan, D. Zhang, D. Li, C. Zhang, Towards smart factory for Industry 4.0: A self-organized multi-agent system with Big Data based feedback and coordination, Computer Networks 101 (2016) 158-168. DOI: https://doi.org/10.1016/j.comnet.2015.12.017
  • [199] M. Hermann, T. Pentek, B. Otto, Design principles for Industry 4.0 scenarios: A literature review, Technical University Dortmund, Dortmund, 2015.
  • [200] Japan Government, 5th Science and Technology Basic Plan, 2016.
  • [201] M. Waka, T. Kadono, S. Harai, T. Okada, N. Imai, Vacuum carburizing method. Patent US 6,187,111. United States, US 6,187,111, 2001.
  • [202] R. Poor, G. Barbee, S. Verhoff, J. Brug, Vacuum carburizing with unsaturated aromatic hydrocarbons. Patent US 7,033,446. United States, US 7,033,446, 2006.
  • [203] P. Kula, J. Olejnik, P. Heilman, Method for under-pressure carburizing of steel workpieces. Patent EU 1,558,781. European Union, EU 1,558,781, 2006.
  • [204] G. Fett, Carburizing method. Patent US 2006/0266436. United States, US 2006/0266436, 2006.
  • [205] R. Poor, G. Barbee, S. Verhoff, J. Brug, Vacuum furnace for carburizing with hydrocarbons. Patent US 7,204,952. United States, US 7,204,952, 2007.
  • [206] P. Kula, J. Olejnik, P. Heilman, Hydrocarbon gas mixture for the under pressure carburizing of steel. Patent EU 1,558,780. European Union, EU 1,558,780, 2007.
  • [207] R. Poor, G. Barbee, S. Verhoff, J. Brugg, Furnace for vacuum carburizing with unsaturated aromatic hydrocarbons. Patent US 7,267,793. United States, US 7,267,793, 2007.
  • [208] J. Tipps, L. Byrnes, Carburizing method. US 7,468,107. United States, US 7,468,107, 2008.
  • [209] P. Kula, J. Olejnik, P. Heilman, Method for under-pressure carburizing of steel workpieces. Patent US 7,550,049. United States, US 7,550,049, 2009.
  • [210] P. Kula, J. Olejnik, P. Heilman, Hydrocarbon gas mixture for the under-pressure carburizing of steel. Patent US 7,513,958, United States, US 7,513,958, 2009.
  • [211] S. Collins, P. Williams, Hybrid carburization with intermediate rapid quench. Patent US 2010/0116377. United States, US 2010/0116377, 2010.
  • [212] B. Jo, C. Kang, Carburization heat treatment method and method of use. Patent US 8,137,482. United States, US 8,137,482, 2012.
  • [213] K. Moyer, Stainless steel carburization process. US 6,425,691. United States, US 6,425,691, 2013.
  • [214] L. Foerster, J. Schwarzer, T. Waldenmaier, Method for carburizing workpieces and its application. Patent US 8,828,150. United States, US 8,828,150, 2014.
  • [215] K. Obayashi, K. Taguchi, S. Kato, S. Kozawa, M. Kubota, Y. Adachi, H. Sato, Gear and its process of manufacture. Patent US 8,733,199. United States, US 8,733,199, 2014.
  • [216] M. Somers, T. Christiansen, Carburizing in hydrocarbon gas. US 8,784,576. Unites States, US 8,784,576, 2014.
  • [217] M. Korecki, W. Fujak, J. Olejnik, M. Stankiewicz, E. Wołowiec-Korecka, Multi-chamber furnace for vacuum carburizing and quenching of gears, shafts, rings and similar workpieces. EP 16000164.0. European Union, EP 16000164.0, 2016.
  • [218] M. Korecki, W. Fujak, J. Olejnik, M. Stankiewicz, E. Wołowiec-Korecka, Device for individual quench hardening of technical equipment components. US 10,072,315. United States, US 10,072,315, 2018.
  • [219] M. Korecki, W. Fujak, J. Olejnik, M. Stankiewicz, E. Wołowiec-Korecka, Multi-chamber furnace from vacuum carburizing and quenching of gears, shafts, rings and similar workpieces. Patent US 9,989,311. United States, US 9,989,311, 2018.
  • [220] M. Korecki, W. Fujak, J. Olejnik, M. Stankiewicz, E. Wołowiec-Korecka, Device for individual quench hardening of technical equipment components, EP 3006576, 2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c467cd82-9e16-488c-ace7-b01c60f0dff7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.