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ABSTRACT

Purpose: The purpose of the work is a complex review of methods applied industrially as case 
hardening. The paper contains an overview of scientific and development works on surface 
case hardening methods, especially carburising and quenching, described in the literature from 
2001-2020.
Design/methodology/approach: State-of-the-art was reviewed by a critical review of the 
world literature published in 2001-2022, including theoretical work, scientific research, and 
industry reports. An additional examination of the state of the art was conducted in terms of 
patent works.
Findings: The period of 2001-2020 was a time of intensive work on the modernisation of case 
hardening techniques to improve the repeatability and uniformity of the produced layers and 
minimise deformations after hardening. Developing computing technologies have played a large 
part in this progress. New technologies have also been developed.
Research limitations/implications: The review of papers and patent databases was limited 
to databases providing English-language content options.
Practical implications: Case hardening is a crucial stage of steel heat treatment in almost 
every industrial branch: mechanical, tool, automotive, railway, and aviation.
Originality/value: A synthetic review of case hardening methods was presented, particularly 
carburizing and quenching methods; it also analysed the possibilities and directions of their 
development.
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1. Introduction 

 
Heat and thermo-chemical treatment is an important area 

of global industry, constituting a critical production stage in 

almost every market sector: mechanical, tool, automotive, 
railway, and aviation (Fig. 1). The global heat-treating 
market was valued at USD 100.73 billion in 2021 and is 
expected to expand at a compound annual growth rate 
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(CAGR) of 3.4% from 2022 to 2030 [1]. The rapid growth 
of the electric vehicle industry and the growing demand for 
metallurgical alterations to suit specific applications is 
expected to boost market growth in the coming years. 
Hardening processes, particularly case hardening, dominate 
the world of heat treatment [2-7]. 

 

 
 

Fig. 1. Global heat-treating market share, by application, according 
to Grand View Research, 2021 [1] 

 
The surface hardening process (including case 

hardening) is a process in which only the surface layer of the 
object is subject to modification of the structure and 
properties. Its market and application significance have been 
poorly described in the literature of the last twenty years 
because, in science, it is perceived as a set of conventional 
technologies. Therefore, reports on the importance and 
impact of surface hardening come mainly from the industrial 
literature [1, 8-20] and from the analysis of the patent status 
in patent databases of various countries (patents selection of 
the last twenty years related to case hardening is presented 
in Tab. 1). 

 
2. Case hardening process 

 
The case hardening process most often consists of the 

process of saturating the surface layer with an element 
capable of creating interstitial hardening in the crystal lattice 
of the iron alloy (carbon, nitrogen, boron) and heat treatment 
(quenching). However, the quenching may occur before (in 
conjunction with nitriding or boriding) or after the saturation 
step (in conjunction with carburising). 
 
2.1. Carburising 
 

Carburizing is heating the material in a carbon-bearing 
medium’s environment at the temperature of the existence 

of homogeneous austenite for the time needed for carbon 
diffusion to occur in the material and the necessary thickness 
of the layer to be formed. Although gas carburising is mainly 
used in industrial conditions [8], carburising carried out in a 
reduced pressure environment has a significant advantage 
over carburising in an endothermic atmosphere because it 
protects the material against oxidation at the grain 
boundaries, ensures excellent surface quality, and allows to 
shorten the duration of the process. In the 21st century, many 
researchers point to the technological advantages of vacuum 
carburising over atmospheric carburising [21-24]. As a 
result, in the last twenty years, the vacuum carburising 
market has increased from 3% to 15%, and publications on 
low-pressure carburising prevail in the literature [5, 25-37]. 
 
2.2. Nitriding 
 

Nitriding is the second type of diffusion saturation 
process with far-reaching applications in case hardening. 
During this process, the surface layer of a metallic object 
(iron and its alloys, titanium) is enriched by diffusion with 
nitrogen. The most crucial property of nitrided layers is their 
high hardness, which determines high resistance to sliding, 
abrasive and erosive wear. In another variation of nitriding, 
the goal of the process is to achieve surface corrosion 
resistance. The emergence of nitriding methods in the first 
half of the 20th century was a response to the shortcomings 
of the then-carburizing methods. The nitriding process 
developed by A. Fry was introduced into industrial practice 
in the early years after World War I. It was successful in the 
aviation, textile, railway, automotive, and machine 
industries [38-41]. Compared to carburising, nitriding was 
carried out at a temperature about 400°C lower than the 
carburising temperature. The steel, after nitriding, had a 
hardness of about 300-400 HV, with no deformations during 
processing. 

The alloy is hardened at process temperature and does 
not require a subsequent quenching process. In addition, in 
industrial practice, there is a belief that nitriding is much 
simpler than carburising in terms of implementation. The 
advantages of nitriding were already described in the 
German literature in the 1920s; among them, the high 
resistance of the nitrided layers to wear, abrasion, corrosion, 
and high surface compressive strength were emphasised. At 
that time, the long process time (up to several dozen hours) 
was perceived as a disadvantage [41]. Alternatives to 
nitriding carried out in gaseous conditions quickly appeared, 
i.e., salt nitriding and ion nitriding. Although nitriding in 
salts is not developed in the 21st century for ecological 
reasons, ion nitriding is still being developed [42-47]. Since 
the 1960s, low-pressure nitriding has also been developed as 

2.  Case hardening process

2.1.  Carburising

2.2. Nitriding
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the concept of low-pressure nitriding has seen the potential 
for better control of the nitrogen stream into steel. In 1966~ 
A. Smirnov and J. Kulesov presented an equilibrium 
diagram of ammonia dissociation degree ‒ pressure ‒ solid 
phases of the iron-nitrogen system and showed that lowering 
the pressure below atmospheric pressure shifts the 
equilibrium towards the ’ and , phases, containing more 
nitrogen than the internal impregnation layer [48]. Work on 
this concept is continued today and has given rise to low-
pressure nitriding technologies, such as the FineLPN 
technology [49,50]. In addition, in the field of gas nitriding, 
in the early 2000s, gas nitriding with the economical use of 
process gas was developed, which is a variant of 
atmospheric nitriding, strongly focused on the economic and 
ecological aspects of its use [51-54]. 

In conclusion, nitriding still plays a vital role in many 
industrial applications in the 21st century. With the 
derivative process of nitrocarburizing, it is often used in 
producing aircraft parts, bearings, automotive components, 
textile machines, and turbine systems, i.e., in making 
machine elements and tools with heavily loaded friction 
nodes and cyclic loads. Variations of nitriding used in 
practice are mainly gas nitriding under atmospheric pressure 
[55-61], ion nitriding [62-64], laser nitriding [65], low-
pressure nitriding [49,50, 66-68], and obsolescent fluidized 
bed nitriding [69-71] and bathing (salt nitriding). In the 
context of research conducted in the 21st century, mainly 
focused on reducing costs (consumption of operating gases 
or time) are controlled nitriding, nitriding with the 
economical use of ammonia, and nitriding under reduced 
pressure [58,59]. 
 
2.3. Boriding 
 

Initially, the term boriding was defined as the enrichment 
of the material’s surface with boron through thermo-
chemical treatment. Using thermal energy and chemical 
reactions, boron atoms were adsorbed on the surface, 
introduced into the base material lattice, and then diffused 
towards the core, forming borides with the substrate atoms. 
However, the intensive development of boron techniques 
meant that the term was extended to other physical methods 
where boron diffusion was less critical [72,73]. Currently, 
boriding is used to increase the hardness, resistance to 
abrasive wear, and corrosion in aggressive environments to 
increase heat resistance. This process consists of the 
diffusion of boron atoms into the crystal lattice of the 
substrate material, which causes a hard interstitial boron 
compound to form on the surface. Boriding plays an 
essential role in modern production technologies and is 
mainly carried out in two ways: by liquid electrolysis or gas 

boriding [73,74]. There are also works on the method of 
laser boriding [73,75,76]. Boriding allows obtaining a 
uniform hard layer over the entire depth from the surface to 
the end of the diffusion layer. The hardness obtained is often 
higher than with any other surface hardening process. The 
combination of high hardness and low coefficient of friction 
improves wear, abrasion, and surface fatigue properties. 
Other benefits of boron deposition are the retention of high 
hardness at elevated temperatures, corrosion resistance in 
acidic environments, and reduced lubricant consumption. 
 
2.4. Quenching 
 

Quenching is a heat treatment that occurs in 
case hardening together with carburizing, nitriding or 
boriding. It consists in heating the steel to a temperature of 
about 30-50oC higher than Ac3, heating the elements in it for 
the time necessary for the austenitic transformation to occur, 
and then quickly cooling in the quenching medium. The 
hardening of the workpiece must be done at a rate that 
ensures the expected structure of the steel. In the case of 
martensitic quenching, the cooling process must be carried 
out at speed higher than the critical speed for a given 
material so that no other phase transformations take place to 
the martensitic transformation temperature and that the 
supercooled austenite can transform into martensite only at 
a temperature below the martensitic transformation 
temperature. Therefore, proper quenching requires taking 
into account a number of process parameters because each 
of them ‒ the type and properties of the cooling media, 
surface, shape, and weight of the cooled elements ‒ has a 
significant impact on the final effect [77]. 
 
3. Geometric deformations 

 
According to the International Federation for Heat 

Treatment and Surface Engineering and the American 
Society for Metals, the global issue of heat treatment at the 
beginning of the 21st century was defined by four points [12, 
78-80]: 

 geometric deformations after heat treatment, methods of 
their control and reduction, and quality control of the 
product after heat treatment; 

 optimal selection and use of cooling media; 
 development and implementation of modelling and 

simulation technologies supporting heat treatment, in 
particular, thermo-chemical; 

 reduction of energy costs of heat and thermo-chemical 
treatment. 

Regarding case hardening, trends 1-3, in particular, have 
been reflected in the literature of the last two decades. 

3.  Geometric deformations
2.3.  Boriding

2.4. Quenching
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Dimensional and shape changes that occur during the 
manufacturing of metallic components cause high additional 
costs because they give rise to reworking or even scrap. 
According to a 1995 survey of the Verband Deutscher 
Maschinen- und Anlagenbau, in the area of power-
transmission technology alone, the costs for removing 
distortion totalled 850 million Euros/year in Germany. To 
minimise these costs, controlling distortion is one of the 
greatest challenges in modern economic production. It is 
gaining importance in current trends of downsizing or 
lightweight construction [81]. Many researchers have 
thoroughly analysed the factors affecting the internal stresses 
in the element after heat treatment. A comprehensive 
dependency diagram was presented by T. Lubben et al. [82]. 

The complexity of the issue of stresses and strains has 
meant that in the last twenty years, a broad literature has 
been devoted to deformations while preventing deformations 
is inextricably linked to their prediction. This became 
possible at a satisfactory level after the dissemination of 
numerical simulations. The main problem in this area is the 
shortage of materials databases and their properties on which 
simulations are based. Still, where these data are available, 
numerical calculations well illustrate the phenomenon of 
hardening geometric deformations [81, 83-86]. Because 
deformations are an element that cannot be eliminated in the 
production of equipment and machine parts, the work on 
understanding and predicting deformation phenomena is 
expected to be a permanent trend in heat treatment research. 
An interesting direction may appear in the single-piece flow 
method (Fig. 2), focused on a single part, which often 
improves the precision and repeatability of heat treatment 
results and reduces hardening deformations [7,83, 87-89]. 

 

 
 

Fig. 2. Single-piece flow heat treatment furnace concept [7] 
 
4. Cooling media role 

 
The exact beginning of humanity’s interest in cooling 

media and their proper selection is difficult to determine. 

Nevertheless, it is undoubtedly associated with the 
beginnings of heat treatment of iron alloys around 4th 
century BC. 

The first petroleum-based quenching oils were 
developed around 1880. Previously, many types of oils of 
natural origin were used, including vegetable, fish, and 
animal oils, especially sperm whale oil. However, since 
then, many advances have been made in developing quench 
oils to provide highly specialised products for specific 
applications. High-quality quenching oils are formulated 
from refined base oils with high thermal stability. Selected 
wetting agents and accelerators are added to achieve specific 
toughening properties. Additions of antioxidants are also 
used to maintain performance over long periods of 
continuous use, and emulsifiers for easy cleaning  
after quenching [90]. Petroleum-based quenching oils are 
divided into several categories depending on the 
performance requirements (quenching rates, operating 
temperatures, and ease of removal) [91,92]. Normal-speed 
quench oils have a relatively low heat transfer coefficient 
and are used in applications where the material being 
quenched has a high hardenability (high alloy steels or tool 
steels are typical examples of steels hardened in normal-
speed oils). Medium-speed quench oils provide intermediate 
quench characteristics and are widely used in medium to 
high-quench applications where reliable, consistent 
metallurgical properties are required. Rapid quench oils are 
used in applications such as low hardenability alloys, 
carburised and carbonitrided components, or large sections 
of medium hardenable steels with high cooling rates to 
ensure maximum mechanical properties. Between 2001 and 
2020, extensive literature on oil quenching was developed 
[18, 90-99].  

However, with increasing environmental, disposal, 
safety, and toxicological concerns, there is an increasing 
interest in using alternative quenching technologies. One of 
the most commonly considered alternatives to quench oils is 
aqueous solutions of water-soluble polymers. In addition to 
providing substantially greater safety with respect to fire and 
disposal, polymer quenchants have been shown to provide 
more uniform heat removal during quenching resulting in 
reduced thermal gradients and reduced distortion. The 
potential of polymer hardenings was already recognised at 
the beginning of the 21st century, and they are increasingly 
used in the heat treatment industry, displacing classic oil 
hardening [100-104]. There are also reports of the 
development of water-cooling methods that could result in 
cooling rates several times faster than conventional 
quenching. While this is an exciting curing option, 
information on the industrial use of this method in 2001-20 
is scarce [105-112]. 

4.  Cooling media role

https://archivesmse.org/resources/html/cms/MAINPAGE
https://archivesmse.org/resources/html/cms/MAINPAGE


74

E. Wołowiec-Korecka

Archives of Materials Science and Engineering LITERATURE REVIEW

Gas as a cooling medium appeared together with the 
technology of vacuum heat treatment. At first, it accelerated 
the cooling of the charge through natural convection and 
thermal conductivity. With the development of technology, 
cooling forced by gas circulation at increased pressure in a 
closed system began to be used, which multiplied the speed 
of gas cooling. However, it was still slower than oil 
quenching until about 2000 [113]. Gas quenching rates 
currently achieved are comparable to medium-speed quench 
oils. The essential advantage of gas quenching in relation to 
oil quenching is the possibility of reducing quenching 
strains; hence much attention is devoted to research on 
increasing the rate of gas cooling [114-121]. 

 
5. Modelling and simulation technologies 

 
Modelling and simulation publications are a particularly 

dynamic trend in the 21st-century heat treatment literature. 
This is related to the systematic increase in the computing 
power of computers and the development of software for 
modelling thermal and thermochemical phenomena, as well 
as the measurable economic benefit of the transition from 
experimental research to research using computer 
calculation methods. There is extensive literature on 
modelling carburizing [34,66, 122-129] and nitriding [128, 
130-136]. In many cases, its added value was not the 
modelling itself but the optimization of the course of 
phenomena, which was challenging to achieve through 
manual iterations. 

In the case of quenching, from the point of view of 
calculation precision, the most critical parameters of the 
quenching model are the coefficients determining the heat 
capacity of the cooled element, which result from its 
physical properties, and then the ability to effectively 
dissipate heat (resulting from the development of the 
element surface) and the conditions hardening. The above 
coefficients make it possible to calculate the cooling rate of 
the charge, which in combination with the carbon 
concentration in the material, makes it possible to determine 
the hardness of the surface layer. Numerous works have 
been devoted to all these coefficients [99, 136-141]. Because 
the analytical mathematical formulas of such complex 
physical phenomena are difficult to solve in an acceptable 
time, many researchers report that in the study of the 
properties of steel after thermo-chemical treatment, they 
stopped using analytical calculations in favour of FEM 
software, such as HEARTS [142], ABAQUS [143], 
SYSWELD [144,145], DANTE [91,139,140,146,147], 
COSMAP [148,149] and DEFORM-HT [84, 150-154]. 
Emphasising the usefulness of numerical methods 
[122,123,148, 153-161], researchers also point to the 

growing use of artificial intelligence methods in this issue 
[126,131,132, 162-176]. Probably the greatest attention in 
heat treatment modelling is devoted to the modelling of 
hardening stresses [83,84,144, 177-184] and strains 
[134,148,181, 185-193]. However, even in commercialised 
computational programs, some problems still remain 
without a satisfactory solution [148]. 

 
6. Future challenges 

 
The last twenty years have been necessary for 

developing case-hardening technologies. The technologies 
developed in this period are now more ecological and 
economical. This is an essential step in today’s economy, 
where the anthropological carbon footprint and energy and 
consumables savings are significant when undertaking new 
economic investments [194-196]. Implementing various 
heat treatment technologies is expected to be modified 
towards increasing the share of automation and robotization 
(Industry 4.0, Industry 5.0) [197-200]. It is also expected 
that the share of numerical calculations will increase toward 
creating digital copies of machine parts and devices at the 
design stage (so-called digital twins) [197]. At the same 
time, however, it seems that all the problems of case 
hardening identified at the beginning of the 21st century 
have remained valid, and none of them has been completely 
eliminated; in particular, the issues of stresses and strains 
after hardening remains at the centre of interest of 
researchers and industry. It is reasonable to expect that work 
on these problems will continue, although the methodology 
of solutions will be different. 

 
Patents 

 
Table 1. 
Patents of the last twenty years related to case hardening 
Year Authors No and year Country Ref. 
2000 Williams et al. US 6,093,303 USA  
2001 Waka et al. US 6,187,111 USA [201] 
2001 Garg et al. US 6,287.393 USA  
2002 Yamaguchi et al. US 6,431,761 USA  
2002 Pelissier US 6,451,137 USA  
2002 Williams et al. US 6,461,448 USA  
2003 Williams et al. US 6,547,888 USA  
2005 Kawata et al. US 6,846,366 USA  
2006 Poor et al. US 6,991,687 USA  
2006 Poor et al. US 7,033,446 USA [202] 
2006 Kula et al. EU 1,558,781 EU [203] 
2006 Fett US 2006/0266436 USA [204] 
2007 Chin et al. US 7,186,304 USA  

5.  Modelling and simulation technologies

6.  Future challenges

Patents
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Table 1. cont. 
Year Authors No and year Country Ref. 
2007 Poor et al. US 7,204,952 USA [205] 
2007 Eiraku et al. US 7,217,327 USA  
2007 Kula et al. EU 1,558,780 EU [206] 
2007 Poor et al. US 7,267,793 USA [207] 
2008 Ishii et al. US 7,326,306 USA  
2008 Somers et al. US 7,431,778 USA  

2008 Tipps and 
Byrnes US 7,468,107 USA [208] 

2009 Kuwabara et al. US 7,622,009 USA  

2009 Obhayashi and 
Okada US 2009/0266449 USA  

2009 Kula et al. US 7,550,049 USA [209] 
2009 Kula et al. US 7,513,958 USA [210] 
2010 Hammond et al. US 7,648,588 USA  
2010 Kuwabara US 7,655,100 USA  
2010 Imbrogno et al. US 7,794,551 USA  
2010 Ishii et al. US 7,811,390 USA  

2010 Collins and 
Williams US 2010/0116377 USA [211] 

2011 Iwasaki et al. US 7,887,747 USA  
2011 Jo and Kang US 8,137,482 USA [212] 
2013 Moyer US 6,425,691 USA [213] 
2014 Foerster et al. US 8,828,150 USA [214] 
2014 Obayashi et al. US 8,733,199 USA [215] 

2014 Somers and 
Christiansen US 8,784,576 USA [216] 

2016 Korecki et al. EP 16000164.0 EU [217] 
2018 Korecki et al. US 10,072,315 USA [218] 
2018 Korecki et al. US 9,989,311 USA [219] 
2020 Korecki et al. EP 3006576 EU [220] 
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