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We rigorously prove that a non-elliptical inhomogeneity continues to per-
mit an internal uniform stress field despite the presence of a nearby non-circular
Eshelby inclusion undergoing uniform anti-plane eigenstrains when the surrounding
matrix is subjected to uniform remote anti-plane stresses. Here, we adopt a specific
representation of the non-circular Eshelby inclusion as a Booth’s lemniscate inclusion.
Our analysis indicates that the internal uniform stress field inside the non-elliptical
inhomogeneity is independent of the existence of the Booth’s lemniscate inclusion
whereas the non-elliptical shape of the inhomogeneity is attributed entirely to its
presence. Representative numerical examples are presented to demonstrate the feasi-
bility of the proposed method of general solution.
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1. Introduction

Eshelby’s uniformity property describing the stresses and strains
inside elastic inhomogeneities has become and will certainly continue to be an
intriguing research topic in the field of micromechanics of composites. Studies
in this area are pervasive throughout the literature. For earlier contributions,
interested readers are referred to a comprehensive and detailed review by Zhou
et al. [1]. More recent studies on Eshelby’s uniformity property can be found in,
for example, Dai et al. [2, 3], Wang et al. [4], Wang and Schiavone [5], Wang
et al. [6, 7], Antipov [8, 9], Marshall [10], Lim and Milton [11].

Wang et al. [4] and Wang and Schiavone [5] recently have established
that an uncoated or coated non-elliptical inhomogeneity embedded in a matrix
subjected to uniform remote anti-plane stresses will continue to admit an internal
uniform stress field despite the presence of a nearby circular Eshelby inclusion
undergoing uniform anti-plane eigenstrains. In practice, however, the shape of the
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Eshelby inclusion need not be circular and may take on a range of complex shapes
ranging from elliptical, hypotrochidal, rectangular to polygonal and polyhedral
[12–14]. It is therefore of interest to ask whether the uniformity property inside
the inhomogeneity can be maintained when the nearby Eshelby inclusion has
a non-circular shape? This is the question we address in this paper.

We consider the internal stress state inside a non-elliptical elastic inhomo-
geneity interacting with a non-circular Eshelby inclusion when the surrounding
matrix is subjected to uniform remote stresses in anti-plane shear. The non-
circular inclusion undergoing uniform anti-plane eigenstrains is represented by
a Booth’s lemniscate. Our objective is to maintain a state of uniform stress state
inside the inhomogeneity by carefully designing the non-elliptical shape of the
inhomogeneity given the presence of the nearby Booth’s lemniscate inclusion.
Using analytic continuation, the analytic function originally defined in the ma-
trix is extended to the domain occupied by the Booth’s lemniscate inclusion in
which it possesses two first-order poles. Consequently, the presence of the Booth’s
lemniscate inclusion can be conveniently incorporated into the established map-
ping function via the additional two first-order poles located within the unit
circle in the image plane. Our analysis indicates that the uniform stress field
inside the inhomogeneity is unaffected by the existence of the Booth’s lemnis-
cate inclusion whereas the non-elliptical shape of the inhomogeneity is attributed
solely to its presence. In addition, the non-uniform stress field in the matrix can
be determined in a straightforward manner but the non-uniform stresses within
the Booth’s lemniscate inclusion are more difficult to calculate since they in-
volve the complete specification of an auxiliary function. It is expected that the
present solution will find application in the optimum design of composites in
which elimination of stress peaks within the elastic inhomogeneity is an essential
design criterion.

2. Complex variable formulation in anti-plane elasticity

We first establish a Cartesian coordinate system {xi} (i = 1, 2, 3). In the anti-
plane shear deformations of an isotropic elastic material, the two shear stress
components σ31 and σ32, the out-of-plane displacement w and the single stress
function φ can be expressed in terms of a single analytic function f(z) of the
complex variable z = x1 + ix2 as [15]

(2.1) σ32 + iσ31 = µf ′(z), φ+ iµw = µf(z),

where µ is the shear modulus, and the two stress components can be expressed
in terms of the single stress function as [15]

(2.2) σ32 = φ,1, σ31 = −φ,2.
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3. General solution of the inverse problem in anti-plane elasticity

As shown in Fig. 1, we consider a domain in <2, infinite in extent, containing
both a non-elliptical elastic inhomogeneity and a non-circular Eshelby inclusion
undergoing uniform stress-free anti-plane eigenstrains (ε∗31, ε

∗
32). The shear mod-

ulus of the elastic inhomogeneity differs from that of the matrix while the Eshelby
inclusion and the matrix are assumed to have the same shear modulus. Let S1,
S2 and S3 denote the inhomogeneity, the matrix and the Eshelby inclusion, re-
spectively, all of which are perfectly bonded across the inhomogeneity-matrix in-
terface L1 and the inclusion-matrix interface L2. Throughout the paper, the sub-
scripts 1, 2 and 3 are used to identify the respective quantities in S1, S2 and S3.
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3
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2

L
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L
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31
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Fig. 1. A non-circular Eshelby inclusion with uniform anti-plane eigenstrains interacting
with a non-elliptical inhomogeneity permitting an internal uniform stress field under uniform

remote anti-plane stresses. Here the non-circular inclusion is represented by a Booth’s
lemniscate inclusion.

The boundary value problem for the three-phase composite takes the follow-
ing form in the physical z-plane:

f2(z) + f2(z) = Γf1(z) + Γf1(z),

f2(z)− f2(z) = f1(z)− f1(z), z ∈ L1;
(3.1a)

f2(z) + f2(z) = f3(z) + f3(z),

f2(z)− f2(z) = f3(z)− f3(z) + 2(ε∗32 + iε∗31)z− 2(ε∗32− iε∗31)z̄, z ∈ L2;
(3.1b)

f2(z) ∼=
σ∞32 + iσ∞31

µ2
z+O(1), |z| → ∞,(3.1c)
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where Γ = µ1/µ2. Equation (3.1a) represents the continuity of traction and
displacement across the perfect inhomogeneity-matrix interface L1; Eq. (3.1b)
describes the continuity of traction and total displacement across the perfect
inclusion-matrix interface L2; Eq. (3.1c) gives the asymptotic behavior of f2(z)
at infinity due to the prescribed uniform remote stresses.

Adding the two equations in Eq. (3.1b), we obtain the following condition on
the interface L2

(3.2) f2(z) = f3(z) + (ε∗32 + iε∗31)z − (ε∗32 − iε∗31)z̄, z ∈ L2.

In this paper, the non-circular Eshelby inclusion is specifically represented
by a Booth’s lemniscate inclusion described by

(3.3) z = m(ξ) = c+
aeiθξ

1− bξ2
, ξ = m−1(z), a > 0, 0 < b < 1, |ξ| ≤ 1,

where c is an arbitrary complex number characterizing the center of the inclusion,
and θ is a phase angle characterizing inclination of the inclusion with respect to
the x1-axis.

Along the inclusion-matrix interface L2, we have

(3.4) z̄ = m̄

(
1

ξ

)
= c̄+

ae−iθξ
ξ2 − b

, |ξ| = 1.

Thus, an auxiliary function D(z) can be constructed as follows

(3.5) D(z) = m̄

(
1

m−1(z)

)
= c̄+

ae−iθm−1(z)

[m−1(z)]2 − b
.

We can see from Eq. (3.5) that the auxiliary function D(z) is analytic in
the interior of the boundary L2 except at the two points z = z1 and z = z2

(illustrated in Fig. 1) defined by

(3.6) z1 = c+ eiθx0, z2 = c− eiθx0, x0 =
a
√
b

1− b2
,

at which D(z) exhibits the following singular asymptotic behavior

(3.7)
D(z) ∼=

a2(1 + b2)

2(1− b2)2

1

z − z1
+O(1), z → z1,

D(z) ∼=
a2(1 + b2)

2(1− b2)2

1

z − z2
+O(1), z → z2.
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By considering Eqs. (3.2), (3.4) and (3.5), the analytic function f2(z) origi-
nally defined in S2 can be extended to S2 ∪ S3 in such a way that

(3.8) f2(z) =

{
f2(z), z ∈ S2,

f3(z) + (ε∗32 + iε∗31)z − (ε∗32 − iε∗31)D(z), z ∈ S3.

Via the analytic continuation in Eq. (3.8), f2(z) is analytic in S2 ∪S3 except
at z = ∞ where its asymptotic behavior is given by Eq. (3.1c), and except at
the two points at z = z1 and z = z2 where its singular or principal part denoted
by f2s(z) is given by

(3.9) f2s(z) = −a
2(1 + b2)(ε∗32 − iε∗31)

2(1− b2)2

(
1

z − z1
+

1

z − z2

)
.

The above indicates that f2(z) has two first-order poles at z = z1 and z = z2

in its extended domain S3. Now we introduce the following conformal mapping
function for the simply-connected domain occupied by the matrix and Booth’s
lemniscate inclusion

(3.10) z = ω(ξ) = R

(
ξ +

p

ξ
+

q1

ξ − ξ̄−1
1

+
q2

ξ − ξ̄−1
2

)
, ξ = ω−1(z), |ξ| ≥ 1,

where R is a real scaling constant and p, q1, q2 are three complex constants.
In order to ensure that the mapping in Eq. (3.10) is one-to-one outside the
interface L1, it is necessary that ω′(ξ) 6= 0 for |ξ| > 1.

As shown in Fig. 2, using the mapping function in Eq. (3.10), the exterior of
the non-elliptical inhomogeneity is mapped onto the exterior of the unit circle
in the ξ-plane; the inhomogeneity-matrix interface L1 is mapped onto the unit
circle |ξ| = 1; the point z = z1 is mapped onto the point ξ = ξ1 = ω−1(z1), and
the point z = z2 is mapped onto the point ξ = ξ2 = ω−1(z2). Thus, the presence
of the non-circular Booth’s lemniscate inclusion is incorporated in the mapping
function through the additional two first-order poles at ξ = ξ̄−1

1 , ξ̄−1
2 inside the

unit circle.
In order to ensure that the stress field inside the non-elliptical inhomogeneity

is uniform, f1(z) defined in the inhomogeneity should take the following form

(3.11) f1(z) = kz, z ∈ S1,

where k is a complex constant to be determined.
By enforcing the interface conditions in Eq. (3.1a) with the use of Eq. (3.11),

we arrive at

(3.12) f2(ξ) = f2(ω(ξ)) =
k(Γ + 1)

2
ω(ξ) +

k̄(Γ− 1)

2
ω̄

(
1

ξ

)
, |ξ| ≥ 1,
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|ξ|=1

ξ=ξ
1

ξ=ξ
2

Reξ

Imξ

Fig. 2. The image ξ-plane.

or more explicitly

f2(ξ) =
Rk(Γ + 1)

2

(
ξ +

p

ξ
+

q1

ξ − ξ̄−1
1

+
q2

ξ − ξ̄−1
2

)
(3.13)

+
Rk̄(Γ− 1)

2

(
1

ξ
+ p̄ξ +

q̄1

ξ−1 − ξ−1
1

+
q̄2

ξ−1 − ξ−1
2

)
, |ξ| ≥ 1.

Using Eq. (3.13) to satisfy the remote asymptotic behavior in Eq. (3.1c) and
the presence of the two first-order poles at z = z1 and z = z2 in Eq. (3.9), we
arrive at the following relationships:

(3.14)

Γ + 1

2
k +

p̄(Γ− 1)

2
k̄ =

σ∞32 + iσ∞31

µ2
,

q1 =
a2(1 + b2)(ε∗32 + iε∗31)

Rk(Γ− 1)(1− b2)2

1

ξ2
1ω
′(ξ1)

,

q2 =
a2(1 + b2)(ε∗32 + iε∗31)

Rk(Γ− 1)(1− b2)2

1

ξ2
2ω
′(ξ2)

.

It follows from Eq. (3.14) that

k =
2(Γ + 1)(σ∞32 + iσ∞31)− 2p̄(Γ− 1)(σ∞32 − iσ∞31)

µ2[(Γ + 1)2 − |p|2(Γ− 1)2]
,(3.15)
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q2

q1
=
ξ2

1ω
′(ξ1)

ξ2
2ω
′(ξ2)

,(3.16)

ε∗32 + iε∗31 =
Rkq1(Γ− 1)(1− b2)2

a2(1 + b2)
ξ2

1ω
′(ξ1),(3.17)

where

(3.18) ω′(ξ) = R

[
1− p

ξ2
− q1

(ξ − ξ̄−1
1 )2

− q2

(ξ − ξ̄−1
2 )2

]
.

Thus, it is seen from Eqs. (2.1), (3.11) and (3.15) that the internal uniform
stress field inside the non-elliptical inhomogeneity is explicitly given by

(3.19) σ32 + iσ31 =
2Γ[(Γ + 1)(σ∞32 + iσ∞31)− p̄(Γ− 1)(σ∞32 − iσ∞31)]

(Γ + 1)2 − |p|2(Γ− 1)2
, z ∈ S1,

which is in fact independent of the existence of the non-circular (Booth’s lem-
niscate) inclusion.

The parameter q2 can be simply determined from Eq. (3.16) using the itera-
tion method for given values of the four parameters ξ1, ξ2, p and q1. Thus, the
mapping function in Eq. (3.10) has been completely determined.

The two complex parameters z1 and z2 can be simply determined from
Eq. (3.10) as follows

(3.20)

z1 = R

(
ξ1 +

p

ξ1
+

q1

ξ1 − ξ̄−1
1

+
q2

ξ1 − ξ̄−1
2

)
,

z2 = R

(
ξ2 +

p

ξ2
+

q1

ξ2 − ξ̄−1
1

+
q2

ξ2 − ξ̄−1
2

)
.

A comparison of Eq. (3.20) with Eq. (3.6) leads to the following relationships

(3.21)

c =
z1 + z2

2
,

θ = arg(z1 − z2),

a
√
b

1− b2
=
|z1 − z2|

2
,

where z1 and z2 are determined by Eq. (3.20). Equation (3.21) indicates that the
complex constant c and the phase angle θ in Eq. (3.3) can be uniquely determined
by Eq. (3.21)1,2 and that the two constants a and b in Eq. (3.3) should satisfy
the relationship in Eq. (3.21)3. Once the real constant b (0 < b < 1) is also given,
the other real constant a(>0) can be uniquely determined from Eq. (3.21)3. One
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requirement is that the obtained inclusion-matrix interface L2 does not intersect
with the inhomogeneity-matrix interface L1.

Substitution of Eqs. (3.15) and (3.18) into Eq. (3.17) yields

(3.22)
µ2(ε∗32 + iε∗31)[(Γ + 1)2 − |p|2(Γ− 1)2]

(Γ2 − 1)(σ∞32 + iσ∞31)− p̄(Γ− 1)2(σ∞32 − iσ∞31)

=
2q1R

2(1− b2)2

a2(1 + b2)

[
ξ̄2

1 − p̄−
q̄1|ξ1|4

(1− |ξ1|2)2
− q̄2ξ̄

2
1

(ξ̄1 − ξ−1
2 )2

]
.

The right-hand side of Eq. (3.22) is known. Thus Eq. (3.22) can be considered
as a relationship between the eigenstrains imposed on the Booth’s lemniscate in-
clusion and remote loading for the given shear moduli of the composite. The
non-uniform stress field in the matrix can be conveniently established by substi-
tuting Eq. (3.13) into Eq. (2.1). It follows from Eqs. (2.1) and (3.12) that the
stresses along the interface L1 on the matrix side are always bounded even at
the points where ω′(ξ) = 0. Furthermore, the analytic function f3(ξ) = f3(ω(ξ))
characterizing the non-uniform stress field inside the Booth’s lemniscate inclu-
sion can be determined from Eq. (3.8) as follows

(3.23) f3(ξ) = f2(ξ)− (ε∗32 + iε∗31)ω(ξ) + (ε∗32 − iε∗31)D(ω(ξ)).

In Eq. (3.23), f2(ξ) is given by Eq. (3.13) whereas the determination of
D(ω(ξ)) is somewhat involved since it is necessary to first determine the explicit
expression of m−1(z) from Eq. (3.3). Fortunately, m−1(z) can indeed be deter-
mined explicitly. However, its specific expression is suppressed here for brevity.

If the eigenstrains imposed on the inclusion are zero, we have from Eq. (3.17)
or (3.22) that q1 = 0. It is then seen from Eq. (3.16) that q2 = 0. Both parameters
q1 and q2 taking the value zero in Eq. (3.10) means that the inhomogeneity is
of elliptical shape. Thus, the non-elliptical shape of the inhomogeneity is caused
solely by the presence of Booth’s lemniscate inclusion.

In the following section, illustrative numerical examples is presented to de-
monstrate the feasibility of the general solution method proposed in this section.

4. Numerical examples

In the first example, we choose

(4.1) ξ1 = 1.5, ξ2 = 2.5, p = 0.5, q1 = −0.3.

The parameter q2 can be determined from Eq. (3.16) through iteration as

(4.2) q2 = −0.1374.
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Fig. 3. The non-elliptical shape of L1 and Booth’s lemniscate shapes of L2 for different
values of b with the four parameters ξ1, ξ2, p and q1 given by Eq. (4.1).

The non-elliptical shape of the inhomogeneity together with the two points
z = z1 and z = z2 is illustrated in Fig. 3. Using Eq. (3.21), we have

(4.3) c = 1.9097R, θ = π,
a
√
b

1− b2
= 0.5612R,

and the shapes of L2 describing Booth’s lemniscate for different values of the
parameter b are also illustrated in Fig. 3. It is quite clear from Fig. 3 that the
right portion of L1 becomes non-convex due to the presence of the nearby Booth’s
lemniscate inclusion.

In the second example, we choose

(4.4) ξ1 = 3, ξ2 = 5, p = 0.5, q1 = 0.15.

The parameter q2 can be determined from Eq. (3.16) through iteration as

(4.5) q2 = 0.0510.

The non-elliptical shape of the inhomogeneity together with the two points
z = z1 and z = z2 is illustrated in Fig. 4. Using Eq. (3.21), we have

(4.6) c = 4.1919R, θ = π,
a
√
b

1− b2
= 0.9508R,
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Fig. 4. The non-elliptical shape of L1 and Booth’s lemniscate shapes of L2 for different
values of b with the four parameters ξ1, ξ2, p and q1 given by Eq. (4.4).

and the shapes of L2 again describing Booth’s lemniscate for different values of
the parameter b are also illustrated in Fig. 4. We see from Fig. 4 that a rounded
corner appears on the right portion of L1 due to the presence of the nearby
Booth’s lemniscate inclusion.

In the third example, we choose

(4.7) ξ1 = 1.5, ξ2 = 2.5 + 0.3i, p = 0.5, q1 = −0.3.

The parameter q2 can be determined from Eq. (3.16) through iteration as

(4.8) q2 = −0.1324− 0.0275i.

The non-elliptical shape of the inhomogeneity together with the two points
z = z1 and z = z2 is illustrated in Fig. 5. By using Eq. (3.21), we have

(4.9) c = (1.9146 + 0.1335i)R, θ = −2.8574,
a
√
b

1− b2
= 0.5831R,

and the shapes of L2 describing Booth’s lemniscate for different values of the
parameter b are illustrated in Fig. 5. It is seen from Fig. 5 that some portion of
L1 almost touches some portion of L2 and these two portions are almost identical
when b = 0.211.

In the fourth example, we choose

(4.10) ξ1 = 1.5 + 0.5i, ξ2 = 1.5− 0.5i, p = 0.5, q1 = −0.2077− 0.1323i.
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Fig. 5. The non-elliptical shape of L1 and Booth’s lemniscate shapes of L2 for different
values of b with the four parameters ξ1, ξ2, p and q1 given by Eq. (4.7).

The parameter q2 can be determined from Eq. (3.16) through iteration as

(4.11) q2 = q̄1 = −0.2077 + 0.1323i.

The non-elliptical shape of the inhomogeneity together with the two points
z = z1 and z = z2 (= z̄1) is illustrated in Fig. 6. Using Eq. (3.21), we have

(4.12) c = 1.4756R, θ =
π

2
,

a
√
b

1− b2
= 0.5404R,

and the shapes of L2 for different values of the parameter b are also illustrated
in Fig. 6. In this example, ξ1 = ξ̄2, p = p̄, and the value of the parameter q1 is
adjusted so that q1 = q̄2. In doing so, both L1 and L2 in Fig. 6 are symmetric
with respect to the x1-axis.

In the fifth example, we choose

(4.13) ξ1 = 1.5, ξ2 = 2.5, p = −0.5, q1 = −0.205.

The parameter q2 can be determined from Eq. (3.16) through iteration as

(4.14) q2 = −0.1015.

The non-elliptical shape of the inhomogeneity together with the two points
z = z1 and z = z2 is illustrated in Fig. 7. Using Eq. (3.21), we have

(4.15) c = 1.4841R, θ = π,
a
√
b

1− b2
= 0.6557R,
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Fig. 6. The non-elliptical shape of L1 and Booth’s lemniscate shapes of L2 for different
values of b with the four parameters ξ1, ξ2, p and q1 given by Eq. (4.10).
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and shapes of L2 for different values of the parameter b are also illustrated in
Fig. 7. We see from Fig. 7 that: (i) one portion of L1 almost touches another
portion of L1; (ii) L2 almost touches L1 when b = 0.2.
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In the sixth and final example, we choose

(4.16) ξ1 = 3, ξ2 = 5, p = −0.5, q1 = 0.53.

The parameter q2 can be determined from Eq. (3.16) through iteration as

(4.17) q2 = 0.1850.
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Fig. 8. The non-elliptical shape of L1 and Booth’s lemniscate shapes of L2 for different
values of b with the four parameters ξ1, ξ2, p and q1 given by Eq. (4.16).

The non-elliptical shape of the inhomogeneity together with the two points
z = z1 and z = z2 is illustrated in Fig. 8. By using Eq. (3.21), we have

(4.18) c = 4.0751R, θ = π,
a
√
b

1− b2
= 0.9770R,

and the shapes of L2 for different values of the parameter b are also illustrated
in Fig. 8. We can see from Fig. 8 that the sharp corner of L1 just touches L2

when b = 0.22.

5. Conclusions

In this paper, we have solved the inverse problem in anti-plane elasticity
associated with the uniformity of stresses inside a non-elliptical inhomogeneity
interacting with a non-circular Booth’s lemniscate inclusion when the matrix is
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subjected to uniform remote stresses. Using analytic continuation, the analytic
function f2(z) is extended to S2∪S3. In doing so, f2(z) has two first-order poles
at z = z1 and z = z2 within its extended domain S3. As a result, a conformal
mapping function in Eq. (3.10) incorporating the existence of the non-circular
inclusion can be introduced that maps the exterior of the inhomogeneity onto
the exterior of the unit circle in the image ξ-plane. As illustrated in the numer-
ical examples, once the four parameters ξ1, ξ2, p and q1 are given, the unique
non-elliptical shape of L1 is determined and different Booth’s lemniscate shapes
of L2 are permissible for different values of the parameter b as long as L2 does
not intersect with L1 (although the two curves can ‘just touch’ each other).
We are extremely interested in adapting the present solution method to in-
vestigate whether other non-circular shapes of the Eshelby inclusion can also
induce a uniform stress field inside the non-elliptical inhomogeneity. The uni-
formity of stresses inside a non-elliptical inhomogeneity in the presence of both
a nearby non-circular Eshelby inclusion and a nearby finite mode III crack is
also an important topic for discussion. In this regard, previous studies on var-
ious crack-inhomogeneity interaction problems are abundant in the literature
(see, for example, [16, 17]).
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