PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The slewing drive system for tower crane with permanent magnet synchronous motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of determining the efficiency of the slewing drive system applied in tower cranes. An algorithm for the proper selection of a permanent magnet synchronous motor (PMSM) for crane applications is presented. In the first stage of our research the proper PMSM was proposed on the basis of the simulation calculation. Next, the PM motor was examined on a special test bench. The experimental setup allows determining major electrical and mechanical parameters of the motor drive system. The applied slewing system consists of: an inverter, gear, cable drum and a permanent magnet motor. The performance and efficiency of the system were experimentally determined. Selected results of the experimental measurement are presented and discussed.
Rocznik
Strony
189--201
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Poznan University of Technology, Poland
  • Krupiński Cranes Poland
Bibliografia
  • [1] Gansen A. U., Chokkalingam L. N., Self-start synchronous reluctance motor new rotor designs and its performance characteristic, International Transaction on Electrical Energy Systems, vol. 29, no. 11, pp. 1–22 (2019).
  • [2] Resa J., Cortes D., Marquez-Rubio J. F., Navarro D., Reduction of induction motor energy consumption via variable velocity and flux references, Electronics, vol. 8, no. 740, pp. 1–14 (2019).
  • [3] Belmans R., Bisschots F., Trimmer R., Practical design considerations for braking problems in over-head crane drives, Annual Meetings of IEEE Industry Applications Society – IAS, vol. 1, pp. 473–479 (1993).
  • [4] Barański M., FE analysis of coupled electromagnetic-thermal phenomena in the squirrel cage motor working at hight ambient temperature, COMPEL, vol. 38, no. 4, pp. 1120–1132 (2019).
  • [5] Kometani H., Sakabe S., Nakanishi K., 3-D electromagnetic analyses of a cage induction motor with rotor skew, IEEE Transactions on Energy Conversion, vol. 11, no. 2, pp. 331–337 (1996).
  • [6] Torrent M., Perat J. I., Jimenez J. A., Permanent magnet synchronous motor with different rotor structures for traction motor in high speed trains, Energies, vol. 11, no. 1549, pp. 1–17 (2018).
  • [7] Knypiński Ł., Nowak L., Demenko A., Optimization of the synchronous motor with hybrid permanent magnet excitation system, COMPEL, 2015, vol. 34, no. 2, pp. 448–455 (2015).
  • [8] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020).
  • [9] Knypiński Ł., Pawełoszek K., Le Manech Y., Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm, Energies, vol. 13, no. 5, pp. 1–11 (2020).
  • [10] Dorell D. G., Popescu M., Evans L., Staton D. A., Knight A. M., Comparison of the permanent magnet drive motor with a cage induction motor design for a hybrid electric vehicle, Proceedings of International Power Electronics Conference – ICCE ASIA, pp. 1–6 (2010), DOI: 10.1109/IPEC.2010.5543566.
  • [11] Barański M., Szeląg W., Łyskawiński W., An analysis of a start-up process in LSPMSMs with aluminum and copper rotor bars considering the coupling of electromagnetic and thermal phenomena, Archives of Electrical Engineering, vol. 68, no. 4, pp. 933–946 (2019).
  • [12] Ślusarek B., Kapelski D., Antal L., Zalas P., Gwozdziewicz M., Synchronous motor with hybrid permanent magnets on the rotor, Sensors, vol. 14, pp. 12425–12436 (2014).
  • [13] Jedryczka C., Szeląg W., Piech J., Multiphase permanent magnet synchronous motors with fractional slot windings, COMPEL, vol. 35, no. 6, pp. 1937–1948 (2016).
  • [14] Wardach M., Pałka R., Paplicki P., Bronisławski M., Novel hybrid excited machine with flux barriersin rotor structure, COMPEL, vol. 37, no. 4, pp. 1489–1499 (2018).
  • [15] Młynarek P., Łukaniszyn M., Jagiełła M., Kowol M., Modelling of heat transfer in low-power IPM synchronous motors, IET Science, Measurement and Technology, vol. 12, no. 8, pp. 1066–1073 (2018).
  • [16] Rebelo J. M., Silvestre M.A.R., Development of a coreless permanent magnet synchronous motor fora battery electric shell eco marathon prototype vehicle, Open Engineering, vol. 8, no. 1, pp. 382–390 (2018).
  • [17] Knypiński Ł., Krupiński J., The energy conversion efficiency in the trolley travelling drive system in tower cranes, Proceedings of 15-th Selected Issue of Electrical Engineering and Electronics – WZEE, pp. 1–4 (2020), DOI: 10.1109/WZEE48932.2019.8979940.
  • [18] Egrov A., Kozlow K., Belogusev V., Method for evaluation of the chain derive efficiency, Journal of Applied Engineering Science, vol. 341, pp. 277–282 (2015).
  • [19] Janaszek M., The analysis of the influence unequal parameters of motors on the work of multimotors traction drive, Journal of the Electrical Engineering Institute (in Polish), vol. 286, pp. 1–26 (2015).
  • [20] Dambrauskas K., Vanagas J., Zimnickas T., Kalvaitisand A., Ažubalis K., A method for efficiency determination of permanent magnet synchronous motor, Energies, vol. 13, no. 1004, pp. 1–15 (2020).
  • [21] Knypiński Ł., Krupiński J., Application of the permanent magnet synchronous motors for tower cranes, Przegląd Elektrotechniczny, vol. 96, no. 1, pp. 27–30 (2020), DOI: 10.15199/48.2020.01.07.
  • [22] Geng S., Zhang Y., Qiu H., Yang R., Yi R., Influence of harmonic voltage coupling on torque ripple of permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 68, no. 2, pp. 399–410 (2019).
  • [23] Dong S., Zhang Q., Ma H., Wang R., Design for the interior permanent magnet synchronous motor drive system based on the Z-source inverter, Energies, vol. 12, no. 3350, pp. 1–14 (2019).
  • [24] Chen Z., Zhang H., Tu W., Luo G., Manoharan D., Kennel R., Sensorless control for permanent magnet synchronous motor in rail transient applications using segmented synchronous modulation, IEEE Access, vol. 7, pp. 76669–7667 (2019).
  • [25] Putz Ł., Bednarek K., Kasprzyk L., Analysis of higher harmonics generated by LED lamps, Przegląd Elektrotechniczny, vol. 96, no. 4, pp. 90–93 (2020).
  • [26] https://www.krupinskicranes.com, accessed July 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4625015-12dd-4857-bd83-f4c78622c616
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.