PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Liquid bridge in slit pore geometry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the morphology of a liquid bridge in a slit pore geometry was investigated as a function of both the bridge height and aspect ratio (height/width). The end contour interface of the liquid bridge was modeled by using a saddle shape, and the liquid-air interface was described via an arc of a circle. By employing the free energy approach, a simple formula was obtained to predict variation of the pinning angle as a function of the distance between the slits. The pinning angle depended on the liquid volume and on both the wetting properties and the geometry of the system (height and width). The critical aspect ratio at which the liquid bridge meniscus transitioned from concave to convex was determined. The calculations were in good agreement with the experimental data. The morphology of the liquid bridges in a slit pore geometry can be used in various fields such as the packaging of electronic and micro-electromechanical systems.
Rocznik
Strony
135--142
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • College of Physics Science and Technology, Guangxi Normal University, Guilin, China
autor
  • College of Physics Science and Technology, Guangxi Normal University, Guilin, China
autor
  • College of Physics Science and Technology, Guangxi Normal University, Guilin, China
autor
  • College of Physics Science and Technology, Guangxi Normal University, Guilin, China
Bibliografia
  • 1. Broesch D.J., Dutka F., Frechette J., 2013, Curvature of capillary bridges as a competition between wetting and confinement, Langmuir, 29, 15558-15564.
  • 2. Broesch D.J., Frechette J., 2012, From concave to convex: capillary bridges in slit pore ge ometry, Langmuir, 28, 15548-15554.
  • 3. Chen W., Lin S., Chiang K., 2005, Stability of solder bridging for area array type packaging, Computers, Materials and Continua, 2, 3, 151-153.
  • 4. Chiang K.N., Chen W.L., 1998, Electronic packaging reflow shape prediction for the solder mask defined ball grid array, Journal of Electronic Packaging, 120, 175-178.
  • 5. Evans R., Marconi U.M.B., Tarazona P., 1986, Capillary condensation and adsorption in cylindrical and slit-like pores, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 82, 1763-1787.
  • 6. Galaktionov E.V., Galaktionova N.E., Tropp E.A., 2017, Shape of the surface of a vertical liquid bridge between two parallel solid planes taking into account the gravity force for small Bond numbers, Technical Physics, 62, 1482-1489.
  • 7. Peng Y.F., Li G.X., 2007, An elastic adhesion model for contacting cylinder and perfectly wetted plane in the presence of meniscus, Journal of Tribology, 129, 231-234.
  • 8. Petkov P.V., Radoev B.P., 2014, Statics and dynamics of capillary bridges, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460, 18-27.
  • 9. Princen H.M., 1970, Capillary phenomena in assemblies of parallel cylinders: III. Liquid columns between horizontal parallel cylinders, Journal of Colloid and Interface Science, 34, 171-184.
  • 10. Raccurt O., Tardif F., d’Avitaya F.A., Vareine T., 2004, Influence of liquid surface tension on stiction of SOI MEMS, Journal of Micromechanics and Microengineering, 14, 1083-1085.
  • 11. Swain P.S., Lipowsky R., 2000,Wetting between structured surfaces: Liquid bridges and induced forces, Europhysics Letters, 49, 203-206.
  • 12. Valencia A., Brinkmann M., Lipowsky R., 2001, Liquid bridges in chemically structured slit pores, Langmuir, 17, 3390-3399.
  • 13. Wei Z., Zhao Y.P., 2007, Growth of liquid bridge in AFM, Journal of Physics D: Applied Physics, 40, 4368-4370.
  • 14. Xu J., Xia J., Hong S.W., Lin Z., Qiu F., Yang Y., 2006, Self-assembly of gradient concentric rings via solvent evaporation from a capillary bridge, Physical Review Letters, 96, 066104.
  • 15. Zhu Z.F., Jia J.Y., Fu H.Z., Chen Y. L., Zeng Z., Yu D. L., 2015, Shape and force analysis of capillary bridge between two slender structured surfaces, Mechanical Sciences, 6, 211-220.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4562ab2-2f98-4282-970d-e47fc6b0e8b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.