PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synthesis, physicochemical studies, fluorescence behavior, and anticancer properties of transition metal complexes with the pyridyl ligand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel series of complexes with the formula [MLCl] [M = Co(II) (1), Ni(II) (2), Cu(II) (3), Zn(II) (4)] arising from Pyridyl ligand, N,N’-bis(1-(2-pyridyl)ethylidene)-2,2-dimethylpropane-1,3-diamine), ligand, L, was synthesized and investigated by elemental analyses, FT-IR, 1H and 13C NMR, Powder XRD, and thermal analyses. TGA analysis indicated that all complexes degraded in three different steps, while the PXRD examination showed well-defined sharp crystalline peaks for the complexes, indicating significant crystallinity. The antiproliferative activity of the ligand and its complexes were also evaluated in vitro against the HeLa (Human Cervical Cancer Cells) and HCT116 (Colon Cancer Cells) cell lines. The findings suggested complex 4 to be potential anticancer agent against these cell lines. In addition, ligand and its complexes also exhibited considerable emission properties.
Słowa kluczowe
Rocznik
Strony
35--40
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
  • Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
  • Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
Bibliografia
  • 1. Cho, Y.I., Ward, M.L. & Rose, M.J. (2016). Substituent effects of N4 Schiff base ligands on the formation of fluoride-bridged dicobalt(II) complexes via B–F abstraction: structures and magnetism. Dalton. Trans. 45, 13466–13476. DOI: 10.1039/C6DT02104B.
  • 2. Pradeepa, C.P. & Das, S.K. (2013). Coordination and supramolecular aspects of the metal complexes of chiral N-salicyl-β-amino alcohol Schiff base ligands: Towards understanding the roles of weak interactions in their catalytic reactions. Coord. Chem. Rev. 257, 1699–1715. DOI: 10.1016/j.ccr.2013.01.028.
  • 3. Perlepe, P.S., Silva, L.C., Bekiari, V., Gagnon, K.J., Teat, S.J., Escuere, A. & Stamatatos, T.C. (2016). Structural diversity in NiII cluster chemistry: Ni5, Ni6, and {NiNa2}n complexes bearing the Schiff-base ligand N-naphthalidene-2-amino-5-chlorobenzoic acid. Dalton. Trans. 45, 10256–10270. DOI: 10.1039/C6DT01162D
  • 4. Roth, A., Spielberg, E.T. & Plass, W. (2007). Kit for Unsymmetric Dinucleating Double-Schiff-Base Ligands: Facile Access to a Versatile New Ligand System and Its First Hetero-bimetallic Copper–Zinc Complex. Inorg. Chem. 46, 4362–4364. DOI: 10.1021/ic070088i.
  • 5. Vardhan, H., Mehta, A., Nathab, I. & Verpoort, F. (2015). Dynamic imine chemistry in metal–organic polyhedral. RSC. Adv. 5, 67011–67030. DOI. 10.1039/C5RA10801B.
  • 6. (a) Bhattacharjee, A., Halder, S., Ghosh, K., Rizzoli, C. & Roy, P. (2017). Mono-, tri- and polynuclear copper(ii) complexes of Schiff-base ligands: synthesis, characterization and catalytic activity towards alcohol oxidation. New. J. Chem. 41, 5696–5706. DOI: 10.1039/C7NJ00846E. (b) Liu, X., González-Castro, A., Mutikainen, I., Pevec, A., Teat, S.J., Gamez, P.,6. (a) Bhattacharjee, A., Halder, S., Ghosh, K., Rizzoli, C. & Roy, P. (2017). Mono-, tri- and polynuclear copper(ii) complexes of Schiffbase ligands: synthesis, characterization and catalytic activity towards alcohol oxidation. New. J. Chem. 41, 5696–5706. DOI: 10.1039/C7NJ00846E. (b) Liu, X., González-Castro, A., Mutikainen, I., Pevec, A., Teat, S.J., Gamez, P.,Costa, J.S., Bouwman, E. & Reedijk, J. (2016). Zinc and cadmium halide compounds with the tridentate ligand 2-(methylsulfanyl)-N-(pyridin-2-ylmethylidene)aniline showing yellow luminescence. Polyhedron. 110, 100–105. DOI: 10.1016/j.poly.2016.02.030. (c) O'Reilly, R.K., Gibson, V.C., White, A.J.P. & Williams, D.J. (2004). Five-coordinate iron(II) complexes bearing tridentate nitrogen donor ligands as catalysts for atom transfer radical polymerization. Polyhedron. 23, 2921–2928. DOI: 10.1016/j.poly.2004.09.001. (d) Bhaumik, P.K., Jana, S. & Chattopadhyay, S. (2012). Synthesis and characterization of square planar and square pyramidal copper(II) compounds with tridentate Schiff bases: Formation of a molecular zipper via H-bonding interaction. Inorg. Chim. Acta. 390, 167–177. DOI: 10.1016/j.ica.2012.04.004. (e) Gupta, K.C. & Sutar, A.K. (2008). Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 252, 1420–1450. DOI: 10.1016/j.ccr.2007.09.005.
  • 7. Al Rasbi, N.K. & Husband, J.J. (2016). Excitation and emission properties of Zn(II) Schiff base complex by combined crystallographic, spectroscopic and DFT studies. J. Photochem. Photobiol. 314, 96–103. DOI: 10.1016/j.jphotochem.2015.08.007.
  • 8. Hadjoudis, E. & Mavridis, I.M. (2014). Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem. Soc. Rev. 33, 579–588. DOI: 10.1039/B303644H.
  • 9. Yu, W., Jia, J., Gao, J., Han, L. & Li, Y. (2016). The preparation of a new type of ferrocene-based compounds with large conjugated system containing symmetrical aromatic vinyl with Schiff base moieties and the study of their third-order nonlinear optical properties. Chem. Phys. Lett. 661, 251–256. DOI: 10.1016/j.cplett.2016.04.096.
  • 10. Biswas, R., Ida, Y., Baker, M.L., Biswas, S., Kar, P., Nojiri, H., Ishida, T. & Ghosh, A (2013). A New Family of Trinuclear Nickel(II) Complexes as Single-Molecule Magnets. Chem. Eur. J. 19, 3943–3953. DOI: 10.1002/chem.201202795.
  • 11. Lee, J., Lee, H., Nayab, S. & Yoon, K.B. (2019). Synthesis, characterization and polymerisation studies of cadmium(II) complexes containing N,N′,X-tridentate X-substituted (X = N, O) 2-iminomethylpyridines. Polyhedron. 158, 432–440. DOI: 10.1016/j.poly.2018.11.033.
  • 12. Azam, M., Wabaidur, S.M., Alam, M.J., Trzesowska-Kruszynska, A., Kruszynski, R., Alam, M., Al-Resayes, S.I., Dwivedi, S., Khan, M.R., Islam, M.S. & Albaqami, N.T.M. (2019). Synthesis, structural investigations and pharmacological properties of a new zinc complex with a N4-donor Schiff base incorporating 2-pyridyl ring. Inorg. Chim. Acta. 487, 97-106. DOI: 10.1016/j.ica.2018.12.009.
  • 13. Satterfield, M. & Brodbelt, J.S. (2001). Relative Binding Energies of Gas-Phase Pyridyl Ligand/Metal Complexes by Energy-Variable Collisionally Activated Dissociation in a Quadrupole Ion Trap. Inorg. Chem. 40, 5393–5400. DOI: 10.1021/ic010356r.
  • 14. Azam, M., Al-Resayes, S.I., Wabaidur, S.M., Trzesowska-Kruszynska, A., Kruszynski, R., Mohapatra, R.K. & Siddiqui, M.R.H. (2018). Cd(II) complex constructed from dipyridyl imine ligand: Design, synthesis and exploration of its photocatalytic degradation properties. Inorg. Chim. Acta. 471, 698–704. DOI: 10.1016/j.ica.2017.12.005.
  • 15. (a) Scales, S.J., Zhang, H., Chapman, P.A., McRory, C.P., Derrah, E.J., Vogels, C.M., Saleh, M.T., Decken, A. & Westcott, S.A. (2004). Synthesis, characterization, and cytotoxicities of palladium(II) and platinum(II) complexes containing fluorinated pyridinecarboxaldimines. Polyhedron. 23, 2169–2176. DOI: 10.1016/j.poly.2004.06.013; (b) McDonnell, U., Kerchoffs, J.M.C.A., Castineiras, R.P.M., Hicks, M.R., Hotze, A.C.G., Hannon, M.J. & Rodger, A. (2008). Synthesis and cytotoxicity of dinuclear complexes containing ruthenium(II) bipyridyl units linked by a bis(pyridylimine) ligand. Dalton. Trans. 667–675. DOI: 10.1039/B711080D.
  • 16. Samanta, B., Chakraborty, J., Choudhury, C.R., Dey, S.K., Dey, D.K., Batten, S.R., Jensen, P., Yap, G.P.A. & Mitra, S. (2007). Synthesis, characterisation and structural aspects of a new diorganotin(IV) complex with N′-(5-bromo-2-hydroxybenzylidene)benzoylhydrazone ligand. Struct. Chem. 18, 287–293. DOI: 10.1007/s11224-006-9133-y.
  • 17. (a) Kettunen, M, Vedder, C., Brintzinger, H.-H., Mutikainen, I., Leskel€a, M. & Repo, T. (2005). Alternative Coordination Modes in Palladium(II)-Diimino-Bispyridine Complexes with an Axially Chiral Biphenyl Backbone. Eur. J. Inorg. Chem. 1081–1089. DOI: 10.1002/ejic.200400913; (b) Sibanyoni, J.M., Bagihalli, G.B. & Mapolie, S.F. (2012). Binuclear Pd-methyl complexes of N,N′-{1, n}-alkanediyl-bis(pyridinyl-2-methani-mine) ligands (n = 5, 8, 9, 10 and 12): Evaluation as catalysts precursors for phenylacetylene polymerization. J. Organomet. Chem. 700, 93–102. DOI: 10.1016/j.jorganchem.2011.11.019; (c) Chen, R., Bacsa, J. & Mapolie, S.F. (2003). {N-alkyl-N-[pyridin-2-ylmethylene] amine}dichloro palladium(II) complexes: synthesis, crystal structures and evaluation of their catalytic activities for ethylene polymerization. Polyhedron. 22, 2855–2861. DOI: 10.1016/S0277-5387(03)00410-8.
  • 18. Kumar, V., Manar, K.K., Gupta, A.N., Singh, V., Drew, M.G.B. & Singh, N. (2016). Impact of ferrocenyl and pyridyl groups attached to dithiocarbamate moieties on crystal structures and luminescent characteristics of group 12 metal complexes. J. Organomet. Chem. 820, 62–69. DOI: 10.1016/j.jorganchem.2016.08.007.
  • 19. Pracharova, J., Vigueras, G., Novohradsky, V., Cutillas, N., Janiak, C., Kostrhunova, H., Kasparkova, J., Ruiz, J. & Brabec, V. (2018). Exploring the Effect of Polypyridyl Ligands on the Anticancer Activity of Phosphorescent Iridium(III) Complexes: From Proteosynthesis Inhibitors to Photodynamic Therapy Agents. Chem. Eur. J. 24, 4607–4619. DOI: 10.1002/chem.201705362.
  • 20. Al-Resayes, S.I., Azam, M., Trzesowska-Kruszynska, A., Kruszynski, R., Soliman, S.M., Mohapatra, R.K. & Khan, Z. (2020). Structural and Theoretical Investigations, Hirshfeld Surface Analyses, and Cytotoxicity of a Naphthalene-Based Chiral Compound. ACS. Omega. 5, 27227–27234. DOI: 10.1021/acsomega.0c03376.
  • 21. Li, J.J., Guo, L., Tian, Z., Tian, M., Zhang, S., Xu, K., Qian, Y. & Liu, Z. (2017). Novel half-sandwich iridium(iii) imino-pyridyl complexes showing remarkable in vitro anticancer activity. Dalton. Trans. 46, 15520–15534. DOI: 10.1039/C7DT03265J.
  • 22. Stepanenko, I.N., Casini, A., Edafe, F., Novak, M.S., Arion, V.B., Dyson, P.J., Jakupec, M.A. & Kepple, B.K. (2011). Conjugation of Organoruthenium(II) 3-(1H-Benzimidazol-2-yl) pyrazolo[3,4-b]pyridines and Indolo[3,2-d]benzazepines to Recombinant Human Serum Albumin: a Strategy To Enhance Cytotoxicity in Cancer Cells. Inorg. Chem. 50, 12669–12679. DOI: 10.1021/ic201801e.
  • 23. Sava, G., Bergamoa, A. & Dyson, P.J. (2011). Metal-based antitumour drugs in the post-genomic era: what comes next. Dalton. Trans. 40, 9069–9075. DOI: 10.1039/C1DT10522A.
  • 24. Mallela, R., Konakanchi, R., Guda, R., Munirathinam, N., Gandamalla, D., Yellu, N.R. & Kotha, L.R. (2018). Zn(II), Cd(II) and Hg(II) metal complexes of 2-aminonicotinaldehyde: Synthesis, crystal structure, biological evaluation and molecular docking study. Inorg. Chim. Acta, 469, 66–75. DOI: 10.1016/j.ica.2017.08.042.
  • 25. Kritsanawong, S., Innajak, S., Imoto, M. & Watanapokasin, R. (2016). Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. Int. J. Oncology 48, 2155–2165. DOI: 10.3892/ijo.2016.3399.
  • 26. Huang, Y.C., Haribabu, J., Chien, C.M., Sabapathi, G., Chou, C.K., Karvembu, R., Venuvanalingam, P., Ching, W.M., Tsai, M.L. & Hsu, S.C.N. (2019). Half-sandwich Ru(η6-p-cymene) complexes featuring pyrazole appended ligands: Synthesis, DNA binding and in vitro cytotoxicity. J. Inorg. Biochem. 194, 74–84. DOI: 10.1016/j.jinorgbio.2019.02.012.
  • 27. Azam, M,. Wabaidur, S.M., Alam, M., Khan, Z., Alanazi, I.O., Al-Resayes, S.I., Moon, I.S. & Rajendra. (2021). Synthesis, characterization, cytotoxicity, and molecular docking studies of ampyrone-based transition metal complexes. Trans. Met. Chem. 46, 65–71. DOI: 10.1007/s11243-020-00422-8.
  • 28. Shakir, M., Azam, M., Azim, Y., Parveen, S. & A.U. Khan, A.U. (2007). Synthesis and physico-chemical studies on complexes of 1,2-diaminophenyl-N,N′-bis-(2-pyridinecarboxaldimine), (L): A spectroscopic approach on binding studies of DNA with the copper complex. Polyhedron. 26, 5513–5518. DOI: 10.1016/j.poly.2007.08.032.
  • 29. Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds. Fourth ed. New York, Wiley Interscience. (1986).
  • 30. Bréfuel, N., Vang, I., Shova, S., Dahan, F., Costes, J.-P. & Tuchagueş J.-P. (2007). FeII Spin crossover materials based on dissymmetrical N4 Schiff bases including 2-pyridyl and 2R-imidazol-4-yl rings: Synthesis, crystal structure and magnetic and Mössbauer properties. Polyhedron 26, 1745–1757. DOI: 10.1016/j.poly.2006.12.017.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c4525f22-df3c-4505-a8a6-b793132e9130
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.