PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Representation Theorems for Lattice-ordered Modal Algebras and their Axiomatic Extensions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present relational representation theorems for lattice-based modal algebras and their axiomatic extensions taking into account well-known schemas of modal logics. The underlying algebraic structures are bounded, not necessarily distributive lattices. Our approach is based on the Urquhart’s result for non-distributive lattices and Allwein and Dunn developments for algebras of liner logics.
Wydawca
Rocznik
Strony
183--203
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] Stone M. The theory of representations of Boolean algebras. Transactions of the American Mathematical Society. 1936;40:37–111. Available from: http://www.ams.org/journals/tran/1936-040-01/S0002-9947-1936-1501865-8/S0002-9947-1936-1501865-8.pdf.
  • [2] Jónsson B, Tarski A. Boolean algebras with operators, Part I. American Journal of Mathematics. 1951; 73:891–939. doi:10.2307/2372123.
  • [3] Jónsson B, Tarski A. Boolean algebras with operators, Part II. American Journal of Mathematics. 1952; 74:127–162. doi:10.2307/2372074.
  • [4] Maksimova LL. Pretabular superintuitionistic logics. Algebra and Logic. 1972;11(5):558–570. doi:10.1007/BF02330744.
  • [5] Maksimova LL. Pretabular extensionsof the Lewis’ logic S4. Algebra and Logic. 1975;14(1):28–55. doi:10.1007/BF01668576.
  • [6] Priestley HA. Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society. 1970, 2:186–190. doi:10.1112/blms/2.2.186.
  • [7] Priestley HA. Ordered topological spaces and the representation of distributive lattices. Proceedings of the London Mathematical Society. 1972;24:507–530. doi:10.1112/plms/s3-24.3.507.
  • [8] Urquhart A. A topological representation theorem for lattices. Algebra Universalis. 1978;8:45–58. doi:10.1007/BF02485369.
  • [9] Allwein G, Dunn M. Kripke models for linear logic. Journal of Symbolic Logic. 1993;58:514–545. Available from: http://www.jstor.org/stable/2275217. doi:10.2307/2275217.
  • [10] Orłowska E, Rewitzky I. Discrete dualities for Heyting algebras with operators. Fundamenta Informaticae. 2007;81(1-3):275–295.
  • [11] Orłowska E, Rewitzky I. Discrete duality and its applications to reasoning with incomplete information. In: Rough Sets and Intelligent Systems Paradigms. vol. 4585 of Lecture Notes in Computer Science. Springer Berlin; 2007. p. 51–56. ISBN: 978-3-540-73450-5. doi:10.1007/978-3-540-73451-2 7.
  • [12] Orłowska E, Rewitzky I. Context algebras, context frames, and their discrete duality. In: Peters JF, Skowron A, Rybiński R, editors. Transactions of Rough Sets IX. vol. 5390 of Lecture Notes in Computer Science. Springer Berlin; 2008. p. 212–229. ISBN: 978-3-540-89875-7. doi:10.1007/978-3-540-89876-4 13.
  • [13] Orlowska E, Rewitzky I. Discrete Duality for Relation Algebras and Cylindric Algebras. In: Berghammer R, Jaoua AM, Möller B, editors. Relations and Kleene Algebra in ComputerScience. vol. 5827 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2009. p. 291–305. ISBN: 978-3-642-04638-4. doi:10.1007/978-3-642-04639-1 20.
  • [14] Orłowska E, Rewitzky I. Algebras for Galois-style connections and their discrete duality. Fuzzy Sets and Systems. 2010;161(9):1325–1342. doi:10.1016/j.fss.2009.12.013.
  • [15] Orłowska E, Golińska-Pilarek J. Dual Tableaux: Foundations, Methodology, Case Studies. vol. 33 of Trends in Logic. Springer Dordrecht Heidelberg London New York; 2011. ISBN:978-94-007-0004-8. doi:10.1007/978-94-007-0005-5.
  • [16] Düntsch I, Orłowska E, Radzikowska AM. Lattice-based relation algebras and their representability. In: de Swart HCM, Orowska E, Schmidt G, Roubens M, editors. Theory and Applications of Relational Structures as Knowledge Instruments. vol. 2929 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2003. p. 234–258. ISBN: 978-3-540-20780-1. doi:10.1007/978-3-540-24615-2 11.
  • [17] Düntsch I, Orłowska E, Radzikowska AM. Lattice-based relation algebras II. In: de Swart HCM, Orłowska E, Schmidt G, RoubensM, editors. Theory and Applications of Relational Structures as Knowledge Instruments II. vol. 4342 of Lecture Notes in Artificial Intelligence. Springer Berlin Heidelberg; 2006. p. 267–289. ISBN:978-3-540-69223-2. doi:10.1007/11964810 13.
  • [18] Orłowska E, Radzikowska AM. Relational representability for algebras of substructural logics. In: Mac-Caull W, Winter M, Düntsch I, editors. Relational Methods in Computer Science. vol. 2939 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2006. p. 212–226. ISBN: 978-3-540-33339-5. doi:10.1007/11734673 2.
  • [19] Düntsch I, Orłowska E. Discrete Dualities for Double Stone Algebras. Studia Logica. 2011;99(1-3):127–142. doi:10.1007/s11225-011-9349-8.
  • [20] Düntsch I, Orłowska E. A discrete duality between apartness algebras and apartness frames. Journal of Applied Non-Classical Logic. 2008;18(2-3):213–227. doi:10.3166/JANCL.18.213-227.
  • [21] Orłowska E, Radzikowska AM. Representation theorems for some fuzzy logics based on residuated nondistributive lattices. Fuzzy Sets and Systems. 2008;159:1247–1259. doi:10.1016/j.fss.2007.12.009.
  • [22] Orłowska E, Radzikowska AM. Knowledge Algebras and Their Discrete Duality. In: Skowron A, Suraj Z, editors. Rough Sets and Intelligent Systems – Professor Zdzisław Palak in Memoriam. vol. 43 of Intelligent Systems Reference Library. Springer Berlin Heidelberg; 2013. p. 7–20. ISBN: 978-3-642-30340-1. doi:10.1007/978-3-642-30341-8 2.
  • [23] Radzikowska AM. Duality via Truth for Information Algebras based on De Morgan Lattices. Fundamenta Informaticae. 2016;144(1):45–72. doi:10.3233/FI-2016-1323.
  • [24] Orłowska E, Radzikowska AM, Rewitzky I. Dualities for Structures of Applied Logics. vol. 56 of Mathematical Logic and Foundations. College Publications; 2015. ISBN: 978-84890-181-0.
  • [25] Hajek P. Metamathematics of fuzzy logic. Trends in Logic. Springer Netherlands; 1998. ISBN: 978-1-4020-0370-7. doi:10.1007/978-94-011-5300-3.
  • [26] Zadeh L. Fuzzy sets. Information and control. 1965;8:338–358. doi:10.1016/S0019-9958(65)90241-X.
  • [27] Zimmermann HJ. Fuzzy set theory and its applications. Kluwer Academic Publisher; 2001. ISBN: 978-94-010-3870-6. doi:10.1007/978-94-015-7949-0.
  • [28] Demri S, Orłowska E. Incomplete Information: Structure, Inference, Complexity. EATCS Monographs in Theoretical Computer Science. Springer-Verlag Berlin Heidelberg; 2002. ISBN: 978-3-642-07540-7. doi:10.1007/978-3-662-04997-6.
  • [29] Düntsch I, Orłowska E, Radzikowska AM, Vakarelov D. Relational representation theorems for some lattice–based structures. Journal of Relational Methods in Computer Science JoRMiCS. 2004;1:132–160. Available from: http://www.cosc.brocku.ca/Faculty/Winter/JoRMiCS/Vol1/PDF/v1n6.pdf.
  • [30] Orłowska E. Incomplete Information: Rough Set Analysis. Studies in Fuzziness and Soft Computing. Physica Verlag Heidelberg; 1998. ISBN: 978-3-7908-1049-3. doi:10.1007/978-3-7908-1888-8.
  • [31] Pawlak Z. Rough Sets. International Journal of Computer and Information Sciences. 1982;11(5):341–356. doi:10.1007/BF01001956.
  • [32] Orłowska E, Vakarelov D. Lattice-based modal algebras and modal logics. In: Hajek P, Valdes L,Westerstahl D, editors. Logic,Methodology and Philosophy of Science. King’s College London Publishers; 2005. p. 147–170. ISBN: 1-904987-21-4.
  • [33] Chellas BF. Modal Logic: An Introduction. Cambridge University Press, Cambridge; 1980. ISBN: 0-521-29515-7.
  • [34] Gabbay D, (Eds) FG. Handbook of Philosophical Logic. vol. 17. Springer; 2014. doi:10.1007/978-94-007-6600-6.
  • [35] Dzik W, Orłowska E, van Alten C. Relational representation theorems for general lattices with negations. In: Schmidt R, editor. Relations and Kleene Algebra in Computer Science. vol. 4136 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2006. p. 162–176. ISBN: 978-3-540-37873-0. doi:10.1007/11828563 11.
  • [36] Dzik W, Orłowska E, van Alten C. Relational Representation Theorems for Lattices with Negations: A survey. In: de Swart HCM, Orłowska E, Schmidt G, Roubens M, editors. Theory and Applications of Relational Structures as Knowledge Instruments II. vol. 4342 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2006. p. 245–266. ISBN: 978-3-540-69223-2. doi:10.1007/11964810 12.
  • [37] Radzikowska AM. Duality via truth for lattice-based modal algebras with negations; 2016. Submitted.
  • [38] Pawlak Z. Information systems – theoretical foundations. Information Systems. 1981;6:205–218. doi:10.1016/0306-4379(81)90023-5.
  • [39] Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data. Dordrecht, The Netherlands: Kluwer Academic Publisher; 1991. ISBN: 978-0-7923-1472-1. doi:10.1007/978-94-011-3534-4.
  • [40] Esteva F, Godo L. Monoidal t-norm based logic: towards a logic for left–continuous t–norms. Fuzzy Sets and Systems. 2001;124(3):271–288. doi:10.1016/S0165-0114(01)00098-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c44f49d0-7c4f-4371-8e9f-263b40ccc8fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.