Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper, a design method of a static anti-windup compensator for systems with input saturations is proposed. First, an anti-windup controller is presented for system with cut-off saturations, and, secondly, the design problem of the compensator is presented to be a non-convex optimization problem easily solved using bilinear matrix inequalities formulation. This approach guarantees stability of the closed-loop system against saturation nonlinearities and optimizes the robust control performance while the saturation is active.
Rocznik
Tom
Strony
art. no. e151046
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Poznan University of Technology, Faculty of Automation, Robotics and Electrical Engineering, ul. Piotrowo 3a, 60-965 Poznan, POLAND
Bibliografia
- [1] D. Horla, “Static anti-windup compensator based on BMI optimisation for discrete-time systems with cut-off constraints,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e135837, 2021, doi: 10.24425/bpasts.2021.135837.
- [2] A. Johnson and R. Brown, “Static Anti-Windup Compensator Design for Locally Lipschitz Nonlinear Systems,” Automatica, vol. 78, pp. 567–580, 2024.
- [3] M. Hussain et al., “Static anti-windup compensator design for nonlinear time-delay systems subjected to input saturation,” Nonlinear Dyn., vol. 95, pp. 1879—1901, 2019.
- [4] M. Garcia and L. Adams, “Static Anti-Windup Compensation for Systems with Time-Delay and Actuator Saturation,” Syst. Control Lett., vol. 89, pp. 123–136, 2024.
- [5] A.E. Nava-Segura, J. Linares-Flores, and G. Mino-Aguilar , “Vector active filter without current hysteresis controllers,” Proceedings of the 2000 IEEE International Symposium on Industrial Electronics, Cholula, Mexico, 2000, pp. 84–89, doi: 10.1109/ISIE.2000.930491.
- [6] J. Valasek, M.R. Akella, A. Siddarth, and E. Rollins, “Adaptive Dynamic Inversion Control of Linear Plants With Control Position Constraints,” IEEE Trans. Control Syst. Technol., vol. 20, no. 4, pp. 918–933, 2012, doi: 10.1109/TCST.2011.2159976.
- [7] Y. Zahraoui, M. Akherraz, C. Fahassa, and S. Elbadaoui, “Induction motor harmonic reduction using space vector modulation algorithm,” Bull. Electr. Eng. Inform., vol. 9, no. 2, pp. 425–465, 2020, doi: 10.11591/EEI.V9I2.1682.
- [8] P. Dworak, “Squaring down plant model and I/O grouping strategies for a dynamic decoupling of left-invertible MIMO plants,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 3, pp. 471–479, 2014, doi: 10.2478/bpasts-2014-0050.
- [9] S.R. Mahapatro, B. Subudhi, S. Ghosh, and P. Dworak, “A comparative study of two decoupling control strategies for a coupled tank system,” Proceedings of the IEEE Region 10 Annual International Conference, TENCON, Singapore, 2016, pp. 3447–3451.
- [10] P. Dworak, “About dynamic decoupling of a nonlinear MIMO dynamic plant,” 19th International Conference on Methods and Models in Automation and Robotics, 2014, pp. 106–112, doi: 10.1109/MMAR.2014.6957333.
- [11] J.K. Goyal, S. Aggarwal, S. Ghosh, and P. Dworak, “L-2-based static output feedback controller design for a class of polytopic systems with actuator saturation,” Int. J. Control, vol. 95, no. 8, pp. 2151–2163, 2022, doi: 10.1080/00207179.2021.1900605.
- [12] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control. Analysis and Design, 2nd ed., Wiley-Blackwell, Chichester, 2005.
- [13] F. Amato, “Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters,” in Lecture Notes in Control and Information Sciences, Springer, Berlin–Heidelberg, 2006.
- [14] D. Horla, Interplay of Directional Change in Controls and Windup Phenomena – Analysis and Synthesis of Compensators, D. Sc. Monograph, no. 471, Poznan University of Technology, Poznan 2012.
- [15] D. Horla, “On directional change and anti-windup compensation in multivariable control systems,” Int. J. Appl. Math. Comput. Sci., vol. 19, no. 2, pp. 281-289, 2009, doi: 10.2478/v10006-009-0024-4.
- [16] F. Wu and M. Soto, “Extended Anti-windup Control Schemes for LTI and LFT Systems with Actuator Saturations,” Int. J. Robust Nonlinear Control, vol. 14, no. 15, pp. 1255–128, 20041.
- [17] E.F. Mulder, M.V. Kothare, L. Zaccarian, and A.R. Teel, “Multi-variable Anti-windup Controller Synthesis using Bilinear Matrix Inequalities,” Eur. J. Control, vol. 6, no. 5, pp. 455–464, 2000.
- [18] P.J. Campo and M. Morari, “Robust Control of Processes Subject to Saturation Nonlinearities,” Comput. Chem. Eng., vol. 14, no. 4-5, pp. 343–358, 1990.
- [19] D. Henrion, J. Löfberg, M. Kocvara, and M. Stingl, “Solving Polynomial Static Output Feedback Problems with PENBMI,” Technical Report LAAS-CNRS 05165, 2005.
- [20] J. Löfberg, “YALMIP: A Toolbox for Modeling and Optimization in MATLAB,” in Proc. CACSD Conference, Taipei, 2004.
- [21] M. Kocvara and M. Stingl M., “PENNON – A Code for Convex Nonlinear and Semidefinite Programming,” Optim. Method Softw., vol. 18, no. 3, pp. 317–333, 2003.
- [22] Tomlab Optimization, [Online]. Available: http://tomopt.com/tomlab/ (accessed 01.04.2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c44e16be-274f-4948-b486-10c410f7e380