PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the hyperreflexivity of subspaces of Toeplitz operators on regions in the complex plane

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of hyperreflexivity or 2-hyperreflexivity for subspaces of Toeplitz operators on the Hardy spaces on Jordan regions or upper half-plane are given.
Rocznik
Strony
561--567
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • University of Agriculture Institute of Mathematics ul. Balicka 253c, 30-198 Kraków, Poland
autor
  • University of Agriculture Institute of Mathematics ul. Balicka 253c, 30-198 Kraków, Poland
  • Pedagogical University Institute of Mathematics ul. Podchorazych 2, 30-084 Kraków, Poland
Bibliografia
  • [1] N.T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208–233.
  • [2] E. Azoff, On finite rank operators and preannihilators, Memoirs of the AMS, No. 64, Providence, Rhode Island, 1986.
  • [3] E.A. Azoff, M. Ptak, A Dichotomy for Linear Spaces of Toeplitz Operators, J. Funct. Anal. 156 (1998), 411–428.
  • [4] J.B. Conway, A Course in Functional Analysis, Springer, New York, 1990.
  • [5] J.B. Conway, A Course in Operator Theory, AMS, 2000.
  • [6] J.B. Conway, M. Ptak, The harmonic functional calculus and hyperreflexivity, Pacific J. Math. 204 (2002), 19–29.
  • [7] K. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math 31 (1987) 2, 265–273.
  • [8] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
  • [9] P.L. Duren, Theory of Hp Spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970.
  • [10] S. Fisher, Function Theory on Planar Domains, A Second Course in Complex Analysis, Wiley, New York 1983.
  • [11] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, NJ, 1962.
  • [12] K. Klis, M. Ptak, k-hyperreflexive subspaces, Houston J. Math. 32 (2006), 299–313.
  • [13] P. Koosis, Introduction to Hp Spaces, Cambridge University Press, Cambridge 1980.
  • [14] J. Kraus, D. Larson, Reflexivity and distance formulae, Proc. Lond. Math. Soc. 53 (1986), 340–356.
  • [15] W. Loginov, V. Sulman, Hereditary and intermediate reflexivity of W* algebras, Math. USSR-Izv. 9 (1975), 1189–1201.
  • [16] W. Młocek, M. Ptak, On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half–plane, Czechoslovak Math. J. 63 (2013) 2, 421–434.
  • [17] W. Młocek, M. Ptak, On the reflexivity of subspaces of Toeplitz operators in simply connected regions, Acta Sci. Math. (Szeged) 80 (2014), 275–287.
  • [18] H. Mustafayev, On hyper-reflexivity of some operator spaces, Int. J. Math. Math. Sci. 19 (1996), 603–606.
  • [19] N.K. Nikolski, Operators, Functions, and Systems: an Easy Reading, Vol. 1: Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, Vol. 92, AMS, 2002.
  • [20] W. Rudin, Analytic functions of class Hp, Transactions, American Mathematical Soc. 78 (1955), 46–66.
  • [21] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511–517.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c44d98a9-c4a3-430b-82d9-bc960fb87265
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.