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1. INTRODUCTION

The existence of an invariant subspace for the bounded operator on the Hilbert space
(equally the algebra generated by the operator) can be equivalently put as the ex-
istence of a rank one operator in the preannihilator of the algebra generated by the
operator. The reflexivity of an algebra of operators (or more generally a subspace of
operators) means that there are so many rank one operators in the preannihilator
of the algebra (or subspace) of operators that they determine the algebra itself (the
subspace itself). The hyperreflexivity (much stronger property than reflexivity) of an
algebra of operators (or more generally a subspace) means that the usual distance
from any operator to the algebra (or to the subspace) can be controlled by the dis-
tance given by rank one operators in the preannihilator of the algebra (or subspace).
Changing rank one operators to rank & operators we obtain definition of k-reflexivity
and k-hyperreflexivity, respectively. The precise definitions are given in Section 2.
The hyperreflexivity of the algebra of analytic Toeplitz operators on the Hardy
space on the unit disc in the complex plane was shown in [7]. The subspace of all
Toeplitz operators on this Hardy space is not reflexive (it is transitive [3]), but it is
2-reflexive [3] and even 2-hyperreflexive [12]. There was also proved that every weak*
closed subspace of all Toeplitz operators on this Hardy space is 2-hyperreflexive. The
purpose of this note is to move this properties to the Toeplitz operators on the Hardy
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spaces on the Jordan regions in the complex plane or the upper half-plane. Namely
we will prove that the algebra of analytic Toeplitz operators on the Hardy spaces on
Jordan regions in the complex plane or on the upper half-plane is hyperreflexive, the
subspace of all Toeplitz operators on these Hardy spaces is 2-hyperreflexive and we
will get 2-hyperreflexivity of any weak® closed subspace of all Toeplitz operators on
these Hardy spaces.

2. DEFINITIONS AND PRELIMINARIES

If H is a Hilbert space, B(H) will denote the algebra of all bounded linear operators
and by 7¢(H) we denote the set of trace class operators on H. Duality between Tc(H)
and B(H) is given by

(A, t) == tr(At) for A € B(H) and t € Tc(H).
The trace norm in 7¢(H) will be denoted by || - ||1. Recall that
It = sup{|tr(A¢)| : A € B(H), ||Al| <1} for ¢t € Te(H). (2.1)

If § C B(H), then by S, we denote the preannihilator of S and if M C Te(H),
then by M+ we denote the annihilator of M. We will write the set of operators of
rank at most k as Fi(H).

Let S C B(H) be a subspace and A € B(H) be an operator. By
d(A,S), we will denote the usual distance from A to the subspace S, i.e.
d(A,8) :=inf{||]A -S| : S € §}. If S is weak* closed, then the distance d(A,S) can
be calculated by trace class operators, i.e.

d(A,S) = sup{|tr(At)| - t € Sy, |1t < 1} (2.2)

Set
ar(A,S) :=sup{|tr(At)| : t € S N Fr(H), |[t]1 < 1} (2.3)

We now recall after [2] and [12] the definition of k-reflexivity and k-hyperreflexivity.
A subspace S of B(H) is called k-reflerive if S = (S, N Fi(H))*. We call a subspace
S of B(H) k-hyperreflexive if there is a constant ¢ > 0 such that for all A € B(H), we
have

d(A,S) < car(A,S). (2.4)

The smallest constant ¢ satisfying (2.4) is called the k-hyperreflezive constant of S
and denoted by ki (S). It is known that every weak™* closed k-hyperreflexive subspace is
k-reflexive. If k = 1 then the letter k will be omitted and the definition above coincide
with the definition of reflexivity which was introduced for algebras in [21] and extended
for subspaces of operators in [15] and with the definition of hyperreflexivity which was
introduced for algebras in [1] and extended for subspaces of operators in [14].
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We will require the following lemma.

Lemma 2.1. Let H, K be Hilbert spaces. If opeator U : H — K is an isometric
isomorphism, then:

(a) the operator U, defined by U(A) :== UAU™ for A € B(H), is an isometric iso-
morphism and weak* homeomorphism from B(H) onto B(K),

(b) US, U =(USUY) | for S C B(H),

(¢) UFL,(H) U™ = F.(K).

Proof. By [4, Exercise 2, p.61], we have that the operator U is an isometric isomor-
phism of B(#) onto B(KC). Moreover, it is easy to verify that

Urc(H) U™ = 7¢(K) (2.5)

and

tr(At) = tr(UAtU™Y) for A€ B(H),t € 7c(H). (2.6)

Hence, it follows that U and U~! are weak * continuous, so the proof of the condition
(a) is complete. Condition (b) is a consequence of (a). As for (c), it follows by (a)
that the rank one operator g ® h on H satisfies

UlgehU '=UgeUh,
which implies (c). O
The following lemma will play a crucial role in the proofs of the paper.

Lemma 2.2. Let H, K be Hilbert spaces and let U: H — K be an isometric isomor-
phism. If S is a weak™ closed subspace of B(H), then:

(a) d(A,8) =d(UAUY, USUY) for A € B(H),

(b) ax(A,S) = ax,(UAUY,USUY) for A € B(H),

(c) the subspace S is k-hyperreflevive with constant ¢ if and only if USU™! is
k-hyperreflexive with constant c.

Proof. To see (a) and (b) note first that ||t||; = [|[UtU |1 for t € Te(H) by (2.1) and
(2.6). Hence, by (2.2), (2.5), (2.6) and Lemma 2.1, for any A € B(#), we have

d(A,S) =sup{|tr(At)| : t € Sy, ||t € 1} =

sup{|tr(UAtU 1| : UtU e US, U, | UtU 1 < 1} =
=sup{[tr(UAU'UtU )| : UtU ' € (USU Y, |UtU |1 <1} =
=dUAU Y, USU™).

So, the proof of (a) is complete. By similar arguments, we get (b). Finally, combining
(a) and (b) we obtain (c). O
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3. k-HYPERREFLEXIVITY OF TOEPLITZ OPERATORS
ON JORDAN REGIONS

Let © C C be a Jordan region — a simply connected domain which boundary is an
analytic Jordan curve. Let a € Q be an arbitrary point. Set L?(9Q) := L?(99Q, w,)
and L (99Q) := L>®(9N, w,), where w, is the harmonic measure on 92 for the point a.
Dependence on a is suppressed since all harmonic measures are boundedly mutually
absolutely continuous (see for instance [10, Theorem 1.6.1]).

Definition 3.1. The Hardy space H?(f2) is the set of functions F' analytic on  such
that |F|? has a harmonic majorant. By H°(Q2) we denote the space of all bounded
analytic functions on Q.

If © is the unit disc D and a = 0, then the harmonic measure wy becomes the
Lebesgue measure m on the unit circle T and the definition above of H?(D) is equiv-
alent to the classical definition of the Hardy space on the unit disc. It is well known
(see for instance [20]) that the space H?(Q2) (H>(f2), respectively) can be regarded
as a closed subspace of L?(9€2) (weak * closed subspace of L>(992), respectively). We
use Py2(q) to denote the orthogonal projection of L?(9£2) onto H?((2). The standard
citations for Hardy spaces on Jordan regions are [9, 10, 20].

Definition 3.2. For each ® € L>(99), the Toeplitz operator on H?()) with the
symbol @ is the operator Ty defined by

ToF = Py2(q)(®F), F € H*(Q).

If ® € H>*(R), then Ty is called an analytic Toeplitz operator.

By T (£2) we denote the space of all Toeplitz operators and by A(£2) the algebra
of all analytic Toeplitz operators on H?((2).

In [21] it was shown that the algebra A(D) is reflexive. Every weak* closed subspace
of A(D) is reflexive (see [5]). In [3] it was proved that T (D) is not reflexive but it is
2-reflexive. Moreover, full characterization of reflexive subspaces of Toeplitz operators
was given. In [16,17] similar results was proved for the Toeplitz operators on the Hardy
space on the upper half-plane and on Jordan regions respectively.

Now we recall some key results about hyperreflexivity of Toeplitz operators on the
unit disc.

Theorem 3.3.

(1) ([7,12]) The algebra A(D) is hyperreflexive and k(A(D)) < 13.

(2) ([12,18]) The space T (D) is 2-hyperreflexive and ko(T (D)) < 2.

(3) ([12]) Every weak™* closed subspace of T (D) is 2-hyperreflexive with constant at
most J.

We will show that the theorem above can be generalized to Toeplitz operators on
the Hardy space over any Jordan region.
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Theorem 3.4. Let S be a Jordan region. Then:

(1) The algebra A(Q) is hyperreflexive and k(A()) < 13.
(2) The space T () is 2-hyperreflexive and k2(T () < 2.
(3) Every weak™ closed subspace of T () is 2-hyperreflexive with constant at most 5.

Proof. Let a € Q and v: Q — D be the conformal mapping (y(a) = 0 and 7'(a) > 0)
such that v(99Q) = T. Due to [20] the operator U, defined by Us f = fo, f € H*(D) is
an isometric isomorphism between spaces H2(ID) and H?(Q). By Lemma 2.1, it follows
that Uy : B(H2(D)) — B(H2(Q)), Uy(A) := U AU; " is a weak* homeomorphism.
Moreover, Us(T(D)) = T(€2) and Us(A(D)) = A(Q) (see [17, Theorem 5.3]). Hence
the theorem is an immediate consequence of Lemma 2.2 and Theorem 3.3. O

4. --HYPERREFLEXIVITY OF TOEPLITZ OPERATORS
ON THE UPPER HALF-PLANE

We will denote by LP(R) the L spaces of complex functions with the usual Lebesgue
measure on R. Let C denote the upper half-plane.

Definition 4.1. The Hardy space H?(C,) is the space of all analytic functions

F: Cy — C such that sup,. ([ [F(z + iy)|* dx) 2 < 5. By H>(C,) we denote
the space of all bounded analytic functions on C,..

Recall that the space H?(C ) (H*(C. ), respectively) can be identified with a cor-
responding closed subspace of L?(R) (weak * closed subspace of L>(R), respectively).
The standard work on Hardy spaces on the upper half-plane is [9,11,13,19].

Let Pp2(c,) be the orthogonal projection of L?*(R) onto H?*(C,). Similarly as
before we introduce the definition of Toeplitz operators on the upper half-plane.

Definition 4.2. For each ® € L>°(R), the Toeplitz operator on H?(C, ) with symbol
® is the operator Tg defined by

ToF = Pya2c(®F), F € H*(Cy).

If ® € H*(C,), then Ty is called an analytic Toeplitz operator.

We write T (C,.) for the space of all Toeplitz operators and A(C, ) for the algebra
of all analytic Toeplitz operators on H?(C).
The next theorem is a generalization of Theorem 3.3 on the upper half-plane.

Theorem 4.3.

(1) The algebra A(C.) is hyperreflexive and k(A(Cy)) < 13.
(2) The space T(Cy) is 2-hyperreflezive and ko(T(Cy)) < 2.
(3) Every weak* closed subspace of T (C,.) is 2-hyperreflexive with constant at most 5.

Proof. Let v(z) = %’ z € C, be the usual conformal mapping of the upper

half-plane onto the unit disc which takes R onto T\ {1}. We know that the operator
U, defined by (Usf)(z) := —= - f(v(z)), where f € H?(D), z € C, is an isometric

T 241



566 Wojciech Mlocek and Marek Ptak

isomorphism between H?(D) and H?(C,) (see for instance [19]). Lemma 2.1 now
gives that U, : B(H?(D)) — B(H?(C,)), Us(A) := U AU, * is a weak* homeomor-

phism. Furthermore, we have that Us(7(D)) = 7(C,) and Us(A(D)) = A(C,) (see
[16, Theorem 4.4]). Therfore, the proof of the theorem follows clearly from Lemma 2.2
and Theorem 3.3. O
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