PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of thermal activation on dynamic stability of rotating shaft under oscillating torque

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Symposium “Vibrations In Physical Systems” (22 ; 19-22.04.2006 ; Będlewo koło Poznania, Polska)
Języki publikacji
EN
Abstrakty
EN
It is an original result of this paper to show that for thin-walled laminated shafts an important destabilizing factor is related with a torsional moment. The rotating hybrid angle-ply laminated circular cylindrical shell is treated as a beam-like structure. The shaft is subjected to combined loading: a time-dependent (stochastic) torque, the fluctuating component of which can be described by the wide-band gaussian process. The shaft buckles dynamically when the parametric excitation becomes so large that the structure does not oscillate about the unperturbed state, and a new increasing mode of oscillations occurs. The uniform stochastic stability criteria involving damping coefficients a rotation speed, a constant value and a spectral characteristic of torque and geometrical and material parameters are derived using Liapunov's direct method. An influence of the thermal activation of shape memory alloy fibers on stability domain is determined. Formulas defining dynamic stability regions are written explicitly.
Rocznik
Tom
Strony
361--366
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
  • Warsaw University of Technology, Narbutta 84, 02-524 Warszawa Poland, Phone:+48 22 660 8244
Bibliografia
  • 1. Nepershin, R. I., Klimov, W. W., Optimal design of composite transmission shafts with respect to costs and weight, Mechanics of Composite Materials, 4 (1986) 690-695, (in Russian).
  • 2. Bauchau, O. A., Optimal design of high speed rotating graphite/epoxy shafts, J. Composite Materials, 17 (1983)170 -181.
  • 3. Tylikowski, A., Dynamic stability of rotating angle-ply composite shafts, Machine Dynamics Problems, 6 (1993) 141-156.
  • 4. Tylikowski, A., Stochastic stability of rotating composite shafts with Brazier's effect, In: Nonlinear Science, B, 7, Chaos and Nonlinear Mechanics, ( Chua L. O., ed.), World Scientific, Singapore 1994.
  • 5. Tylikowski, A., Influence of torque on dynamic stability of composite thin-walled shafts with Brazier’s effect, Mechanics and Mechanical Engineering, 1 (1997) 145-155.
  • 6. Walker, J. A., Stability of a pin-ended bar in torsion and compression, ASME Journal of Applied Mechanics, 94 (1973) 405-410.
  • 7. Chow, P. L., Stability of nonlinear stochastic-evolution equations, J. Math. Anal., 89 (1982) 400-419.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c44bced5-3188-44fc-afa8-f65b13024a6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.