PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seasonal changes in phytoplankton on the north-eastern shelf of Kangaroo Island (South Australia) in 2012 and 2013

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work investigates for the first time the seasonal changes in phytoplankton, bacteria, and photosynthetic picoplankton as well as nutrient concentrations on the North-western shelf of Kangaroo Island, South Australia. Seawater samples were collected off Penneshaw desalination plant, where waters from the Investigator Straight, Gulf Saint Vincent and Backstairs Passage meet. Low nutrient values were measured throughout the period of study (July 2012–July 2013) suggesting the occurrence of oligotrophic conditions on the region. The phytoplankton community was dominated by Bacillariophyceae, Dinoflagellata and Cryptophyta. Prochlorococcus Cyanobacteria prevailed among picophytoplankton during most of the period of study (July 2012–July 2013). Previous studies indicate that oligotrophic environments are indeed typically dominated by Prochlorococcus. The dominant species found here seem either adapted to grow under low nutrient concentrations, possessing high surface/volume ratios, or have a mixotrophic behaviour allowing them to complement photosynthesis with predation. This study provides base knowledge on the microbial communities north of Kangaroo Island that is needed to sustain the ecosystem and associated economic activities in the future.
Czasopismo
Rocznik
Strony
251--262
Opis fizyczny
Bibliogr. 76 poz., tab., wykr., mapy
Twórcy
autor
  • School of Biological Sciences, Flinders University, Adelaide, Australia
autor
  • Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, Australia
autor
  • School of Biological Sciences, Flinders University, Adelaide, Australia
  • School of Biological Sciences, Flinders University, Adelaide, Australia
Bibliografia
  • Agawin, N.S.R., Duarte, C.M., Agusti, S., 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591—600.
  • Ajani, P., Ingleton, T., Pritchard, T., Armand, L., 2011. Microalgal blooms in the coastal waters of New South Wales, Australia. Proc. Linn. Soc. N.S.W. 133, 15—31.
  • Alves-de-Souza, C., Teresa Gonzalez, M., Luis Iriarte, J., 2008. Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. J. Plankton Res. 30, 1233—1243, http://dx.doi.org/10.1093/plankt/fbn079.
  • Arrigo, K.R., 2005. Marine microorganisms and global nutrient cycles. Nature 437, 349—355, http://dx.doi.org/10.1038/nature04158.
  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyerreil, L.A., Thingstad, F., 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257—263, http://dx.doi.org/ 10.3354/meps010257.
  • Azma, M., Mohamed, M.S., Mohamad, R., Rahim, R.A., Ariff, A.B., 2011. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem. Eng. J. 53, 187—195, http://dx.doi.org/10.1016/j.bej.2010.10.010.
  • Balzano, S., et al., 2012. Diversity of cultured photosynthetic flagellates in the northeast Pacific and Arctic Oceans in summer. Biogeosciences 9, 4553—4571, http://dx.doi.org/10.5194/bg-9-4553-2012.
  • Bell, E.M., Laybourn-Parry, J., 2003. Mixotrophy in the Antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J. Phycol. 39, 644—649, http://dx.doi.org/10.1046/ j.1529-8817.2003.02152.x.
  • Bird, D.F., Kalff, J., 1984. Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can. J. Fish. Aquat. Sci. 41, 1015—1023, http://dx.doi. org/10.1139/f84-118.
  • Bjornsen, P.K., Kuparinen, J., 1991. Growth and herbivory by heterotrophic dinoflagellates in the Southern Ocean, studied by microcosm experiments. Mar. Biol. 109, 397—405, http://dx. doi.org/10.1007/bf01313505.
  • Bockstahler, K.R., Coats, D.W., 1993. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar. Biol. 116, 477—487, http://dx.doi.org/ 10.1007/bf00350065.
  • Brzezinski, M.A., 1985. The Si/N ratio of marine diatoms. Interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347—357.
  • Buma, A.G.J., Gieskes, W.W.C., Thomsen, H.A., 1992. Abundance of Cryptophyceae and Chlorophyll-b containing organisms in the Weddel-Scotia confluence area in the spring of 1988. Polar Biol. 12, 43—52.
  • Campbell, L., Vaulot, D., 1993. Photosynthetic picoplankton community structure in the subtropical north pacific ocean near Hawaii (Station Aloha). Deep Sea Res. Part I: Oceanogr. Res. Pap. 40, 2043—2060, http://dx.doi.org/10.1016/0967-0637(93) 90044-4.
  • Carter, C.M., Ross, A.H., Schiel, D.R., Howard-Williams, C., Hayden, B., 2005. In situ microcosm experiments on the influence of nitrate and light on phytoplankton community composition. J. Exp. Mar. Biol. Ecol. 326, 1—13, http://dx.doi.org/10.1016/j. jembe.2005.05.006.
  • Cavender-Bares, K.K., Karl, D.M., Chisholm, S.W., 2001. Nutrient gradients in the western North Atlantic Ocean: relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Res. Part I: Oceanogr. Res. Pap. 48, 2373—2395, http://dx.doi.org/10.1016/s0967-0637(01)00027-9.
  • Cerino, F., Zingone, A., 2006. A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. Eur. J. Phycol. 41, 363—378, http://dx.doi.org/10.1080/09670260600839450.
  • Cloern, J.E., 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont. Shelf Res. 7, 1367—1381, http://dx.doi.org/10.1016/0278-4343(87)90042-2.
  • Cloern, J.E., 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Rev. Geophys. 34, 127—168, http://dx.doi.org/10.1029/96rg00986.
  • Detmer, A.E., Bathmann, U.V., 1997. Distribution patterns of autotrophic pico- and nanoplankton and their relative contribution to algal biomass during spring in the Atlantic sector of the Southern Ocean. Deep Sea Res. Part II: Top. Stud. Oceanogr. 44, 299—320, http://dx.doi.org/10.1016/s0967-0645(96)00068-9.
  • di Tullio, G.R., Geesey, M.E., Jones, D.R., Daly, K.L., Campbell, L., Smith, W.O., 2003. Phytoplankton assemblage structure and primary productivity along 170 degrees W in the South Pacific Ocean. Mar. Ecol. Prog. Ser. 255, 55—80, http://dx.doi.org/ 10.3354/meps255055.
  • Dortch, Q., 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. 61, 183—201, http://dx.doi.org/10.3354/meps061183.
  • Fisher, T.R., Harding, L.W., Stanley, D.W., Ward, L.G., 1988. Phytoplankton, nutrients, and turbidity in the Chesapeak, Delaware, and Hudson estuaries. Estuar. Coast. Shelf Sci. 27, 61—93, http:// dx.doi.org/10.1016/0272-7714(88)90032-7.
  • Flynn, K.J., Fasham, M.J.R., Hipkin, C.R., 1997. Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 352, 1625—1645.
  • Hallegraef, G.M., et al., 2010. Algae of Australia: Phytoplankton of Temperate Coastal Waters. CSIRO Publishing, Melbourne.
  • Hansen, H.P., Koroleff, F., 2007. Determination of nutrients. In: Grasshoff, K., Kremling, K., Ehrhard, (Eds.), Methods of Seawater Analysis. Third Edition. Wiley — VCH Verlag, 159—228.
  • Head, E.J.H., Pepin, P., 2010. Spatial and inter-decadal variability in plankton abundance and composition in the Northwest Atlantic (1958—2006). J. Plankton Res. 32, 1633—1648, http://dx.doi. org/10.1093/plankt/fbq090.
  • Hillebrand, H., Durselen, C.D., Kirschtel, D., Pollingher, U., Zohary, T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403—424, http://dx.doi.org/10.1046/ j.1529-8817.1999.3520403.x.
  • Huertas, E.I., Rouco, M., Lopez-Rodas, V., Costas, E., 2011. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc. R. Soc. B: Biol. Sci. 278, 3534—3543, http://dx.doi.org/10.1098/rspb.2011.0160.
  • Iglesias-Rodriguez, M.D., et al., 2002. Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Global Biogeochem. Cy. 16, http://dx.doi.org/10.1029/ 2001gb001454.
  • Jendyk, J., Hemraj, D.A., Brown, M.H., Ellis, A.V., Leterme, S.C., 2014. Environmental variability and phytoplankton dynamics in a South Australian inverse estuary. Cont. Shelf Res. 91, 134—144, http://dx.doi.org/10.1016/j.csr.2014.08.009.
  • Justic, D., Rabalais, N.N., Turner, R.E., 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull. 30, 41—46, http://dx.doi.org/10.1016/0025-326x(94)00105-i.
  • Kampf, J., Doubell, M., Griffin, D., Matthews, R.L., Ward, T.M., 2004. Evidence of a large seasonal coastal upwelling system along the southern shelf of Australia. Geophys. Res. Lett. 31, http://dx. doi.org/10.1029/2003gl019221.
  • Klausmeier, C.A., Litchman, E., Daufresne, T., Levin, S.A., 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171—174, http://dx.doi.org/10.1038/nature02454.
  • Landry, M.R., Hassett, R.P., 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67, 283—288, http://dx. doi.org/10.1007/bf00397668.
  • Larsen, A., et al., 2001. Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser. 221, 47—57, http://dx.doi.org/10.3354/ meps221047.
  • Legendre, P., Legendre, L., 1998. Numerical Ecology, vol. 20. Elsevier, New York, 852 pages.
  • Legrand, C., Graneli, E., Carlsson, P., 1998. Induced phagotrophy in the photosynthetic dinoflagellate Heterocapsa triquetra. Aquat. Microb. Ecol. 15, 65—75, http://dx.doi.org/10.3354/ame015065.
  • Leterme, S.C., Edwards, M., Seuront, L., Attrill, M.J., Reid, P.C., John, A.W.G., 2005. Decadal basin-scale changes in diatoms, dinoflagellates, and phytoplankton color across the North Atlantic. Limnol. Oceanogr. 50, 1244—1253.
  • Leterme, S.C., Jendyk, J.G., Ellis, A.V., Brown, M.H., Kildea, T., 2014. Annual phytoplankton dynamics in the Gulf Saint Vincent, South Australia, in 2011. Oceanologia 56, 757—778.
  • Lewis, W.M., 1976. Surface/volume ratio: implications for phytoplankton morphology. Science 192, 885—887, http://dx.doi.org/ 10.1126/science.192.4242.885.
  • Litchman, E., Klausmeier, C.A., Schofield, O.M., Falkowski, P.G., 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170—1181, http://dx.doi.org/10.1111/ j.1461-0248.2007.01117.x.
  • Manes, C.L.D., West, N., Rapenne, S., Lebaron, P., 2011. Dynamic bacterial communities on reverse-osmosis membranes in a full-scale desalination plant. Biofouling 27, 47—58, http://dx.doi. org/10.1080/08927014.2010.536980.
  • Maranon, E., et al., 2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216, 43—56, http://dx.doi.org/10.3354/meps216043.
  • Margalef, R., 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1, 493—509.
  • Marie, D., Partensky, F., Jacquet, S., Vaulot, D., 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green-I. Appl. Environ. Microbiol. 93, 186—193.
  • McClatchie, S., Middleton, J.F., Ward, T.M., 2006. Water mass analysis and alongshore variation in upwelling intensity in the eastern Great Australian Bight. J. Geophys. Res. Oceans 111, http://dx. doi.org/10.1029/2004jc002699.
  • McDonald, S.M., Sarno, D., Scanlan, D.J., Zingone, A., 2007. Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle. Aquat. Microb. Ecol. 50, 75—89, http:// dx.doi.org/10.3354/ame01148.
  • McFadden, G.I., Hill, D.R.A., Wetherbee, R., 1986. A study on the genus Pyramimonas (Prasinophyceae) from Southeastern Australia. Nord. J. Bot. 6, 209—234, http://dx.doi.org/10.1111/j.1756-1051.1986. tb00875.x.
  • Middleton, J.F., et al., 2007. El Nino effects and upwelling off South Australia. J. Phys. Oceanogr. 37, 2458—2477, http://dx.doi.org/ 10.1175/jpo3119.1.
  • Moro, I., La Rocca, N., Dalla Valle, L., Moschin, E., Negrisolo, E., Andreoli, C., 2002. Pyramimonas australis sp. nov (Prasinophyceae, Chlorophyta) from Antarctica: fine structure and molecular phylogeny. Eur. J. Phycol. 37, 103—114, http://dx.doi.org/ 10.1017/s0967026201003493.
  • Not, F., Siano, R., Kooistra, W., Simon, N., Vaulot, D., Probert, I., 2012. Diversity and ecology of eukaryotic marine phytoplankton. In: Piganeau, G. (Ed.), Genomic Insights into the Biology of Algae, vol. 64. 1—53.
  • Novarino, G., 2005. Nanoplankton protists from the western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea). Sci. Mar. 69, 47—74.
  • O'Hara, T.D., 2002. Endemism, rarity and vulnerability of marine species along a temperate coastline. Invertebr. Syst. 16, 671— 684, http://dx.doi.org/10.1071/it01034.
  • Partensky, F., Blanchot, J., Lantoine, F., Neveux, J., Marie, D., 1996. Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep Sea Res. Part I: Oceanogr. Res. Pap. 43, 1191—1213, http://dx.doi.org/10.1016/ 0967-0637(96)00056-8.
  • Partensky, F., Blanchot, J., Vaulot, D., 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull. Inst. Océanogr. 19, 457—476.
  • Percopo, I., Siano, R., Cerino, F., Sarno, D., Zingone, A., 2011. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Bot. Mar. 54, 243—267, http://dx.doi. org/10.1515/bot.2011.033.
  • Prince, J.D., 2001. Ecosystem of the South East Fishery (Australia), and fisher lore. Mar. Freshwater Res. 52, 431—449, http://dx.doi. org/10.1071/mf00042.
  • Redfield, A., 1958. The biological control of chemical factors in the environment. Am. Sci. 46, 205—221.
  • Rodriguez, F., Varela, M., Zapata, M., 2002. Phytoplankton assemblages in the Gerlache and Bransfield Straits (Antarctic Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment data. Deep Sea Res. Part II: Top. Stud. Oceanogr. 49, 723—747, http://dx.doi.org/10.1016/s0967-0645(01)00121-7.
  • Romari, K., Vaulot, D., 2004. Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol. Oceanogr. 49, 784— 798.
  • Schiebel, R., et al., 2004. Distribution of diatoms, coccolithophores and planktic foraminifers along atrophic gradient during SW monsoon in the Arabian Sea. Mar. Micropaleontol. 51, 345— 371, http://dx.doi.org/10.1016/j.marmicro.2004.02.001.
  • Sewell, M.A., Jury, J.A., 2011. Seasonal patterns in diversity and abundance of the High Antarctic meroplankton: plankton sampling using a Ross Sea desalination plant. Limnol. Oceanogr. 56, 1667—1681, http://dx.doi.org/10.4319/lo.2011.56.5.1667.
  • Sherr, E.B., Sherr, B.F., 2007. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352, 187—197, http:// dx.doi.org/10.3354/meps07161.
  • Shi, X.M., Zhang, X.W., Chen, F., 2000. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Technol. 27, 312—318, http://dx. doi.org/10.1016/s0141-0229(00)00208-8.
  • Sverdrup, H.V., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer. 18, 287—295.
  • Tomas, C.R., 1997. Identifying Marine Phytoplankton. Academic Press, San Diego, California, USA, 858 pages.
  • Uchida, T., Kamiyama, T., Matsuyama, Y., 1997. Predation by a photosynthetic dinoflagellate Gyrodinium instriatum on loricated ciliates. J. Plankton Res. 19, 603—608, http://dx.doi.org/ 10.1093/plankt/19.5.603.
  • Van Dongen-Vogels, V., Seymour, J.R., Middleton, J.F., Mitchell, J.G., Seuront, L., 2011. Influence of local physical events on picophytoplankton spatial and temporal dynamics in South Australian continental shelf waters. J. Plankton Res. 33, 1825—1841, http:// dx.doi.org/10.1093/plankt/fbr077.
  • van Dongen-Vogels, V., Seymour, J.R., Middleton, J.F., Mitchell, J.G., Seuront, L., 2012. Shifts in picophytoplankton community structure influenced by changing upwelling conditions. Estuar. Coast. Shelf Sci. 109, 81—90, http://dx.doi.org/10.1016/j.ecss.2012.05.026.
  • van Ruth, P.D., Ganf, G.G., Ward, T.M., 2010a. Hot-spots of primary productivity: an alternative interpretation to conventional upwelling models. Estuar. Coast. Shelf Sci. 90, 142—158, http:// dx.doi.org/10.1016/j.ecss.2010.08.009.
  • van Ruth, P.D., Ganf, G.G., Ward, T.M., 2010b. The influence of mixing on primary productivity: a unique application of classical critical depth theory. Prog. Oceanogr. 85, 224—235, http://dx. doi.org/10.1016/j.pocean.2010.03.002.
  • Vaulot, D., Eikrem, W., Viprey, M., Moreau, H., 2008. The diversity of small eukaryotic phytoplankton ( _3 mm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795—820, http://dx.doi.org/10.1111/ j.1574-6976.2008.00121.x.
  • Verity, P.G., Wassmann, P., Ratkova, T.N., Andreassen, I.J., Nordby, E., 1999. Seasonal patterns in composition and biomass of autotrophic and heterotrophic nano- and microplankton communities on the north Norwegian shelf. Sarsia 84, 265—277.
  • Weisse, T., 1989. The microbial loop in the Red Sea. Dynamics of pelagic bacteria and heterotrophic nanoflagellates. Mar. Ecol. Prog. Ser. 55, 241—250, http://dx.doi.org/10.3354/ meps055241.
  • Zubkov, M.V., Sleigh, M.A., Burkill, P.H., Leakey, R.J.G., 2000. Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons. Prog. Oceanogr. 45, 369—386, http://dx.doi.org/10.1016/s0079-6611(00)00008-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c44b8b7e-2675-431c-b0f5-a7cf2853559e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.