PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Agronomic Impact and Phytotoxicity of Olive Mill Wastewater as a Biofertilizer on Vicia faba L.

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Moroccan olive oil industries generate a substantial amount of olive mill wastewater (OMW), causing a significant environmental issue. Consequently, its valorization represents a sustainable agroecological solution to the environmental problems caused by this uncontrolled discharge. In this context, the use of OMW as an organic biofertilizer in agriculture has been suggested as an alternative to restore soil fertility and improve agricultural production. To comprehensively understand its impact, the conducted study focused on the local cultivar Vicia faba L., investigating the consequences of daily applications of OMW at varying doses (5%, 10%, 20%, 30%). In the experimental design, NaCl solutions, mimicking the electrical conductivity of OMW, were used to pinpoint the potential phytotoxic agents within the wastewater. The results revealed that a high dose of OMW had significant effects on morphological, physiological, and biochemical parameters. Additionally, phytotoxicity depended on both OMW concentration and the growth stage of Vicia faba L., causing growth delays, germination inhibition, as well as the accumulation of proline and soluble sugars. These findings underscore the complexity of using OMW in agriculture and highlight the critical importance of precise control over application rates for the success of this approach. While reusing OMW presents a viable and practical solution, a nuanced understanding of its impact on specific crops and a meticulous approach to dosage management are imperative to realize its potential benefits and mitigate any potential risks to crop productivity.
Twórcy
  • Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Bv Mohammed VI, B.P. 717, Oujda, Morocco
  • Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Bv Mohammed VI, B.P. 717, Oujda, Morocco
  • Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Bv Mohammed VI, B.P. 717, Oujda, Morocco
  • Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
  • Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Bv Mohammed VI, B.P. 717, Oujda, Morocco
  • Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Bv Mohammed VI, B.P. 717, Oujda, Morocco
  • Laboratory of Biology of Plants and Microorganisms, Faculty of Sciences, Mohammed First University, P.B. 717, Oujda, Morocco
  • National Institute of Agronomic Research, Mohammed First University, Bv Mohamed VI, B.P. 428, Oujda, Morocco
  • National Institute of Agronomic Research, Mohammed First University, Bv Mohamed VI, B.P. 428, Oujda, Morocco
  • Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Bv Mohammed VI, B.P. 717, Oujda, Morocco
Bibliografia
  • 1. Ahanger, M.A., Qin, C., Begum, N., Maodong, Q., Dong, X.X., El-Esawi, M., El-Sheikh, M.A., Alatar, A.A., Zhang, L. 2019. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol. 19, 479. https://doi.org/10.1186/s12870-019-2085-3
  • 2. Ahmad, F., Singh, A., Kamal, A. 2018. Synergistic application of salicylic acid and gibberellic acid on Pisum Sativum to induce salt tolerance. Plant Cell Biotechnol. Mol. Biol. 170–178.
  • 3. Al, -Mefleh Naji K., Tadros, M.J., Al, -Tabbal Jalal A. 2020. Impact of mixing treated industrial water with olive mill wastewater on vetch (“Vicia sativa” L.) germination and early seedling growth. Aust. J. Crop Sci. 14, 124–132. https://doi.org/10.3316/informit.099052893835043
  • 4. Alami, A.E., Fattah, A. 2020. Olive mill wastewater causing pollution in the Oum Er Rbia River and potential environmental effects and impact on the Eurasian Otter. J. Anal. Sci. Appl. Biotechnol. 2, Anal. Sci. Appl. Biotechnol. 115. https://doi.org/10.48402/IMIST.PRSM/jasab-v2i2.24324
  • 5. Aldesuquy, H., Baka, Z., Mickky, B. 2014. Kinetin and spermine mediated induction of salt tolerance in wheat plants: Leaf area, photosynthesis and chloroplast ultrastructure of flag leaf at ear emergence. Egypt. J. Basic Appl. Sci. 1, 77–87. https://doi.org/10.1016/j.ejbas.2014.03.002
  • 6. Alrowais, R., Yousef, R.S., Ahmed, O. Konsowa, Mahmoud-Aly, M., Abdel daiem, M.M., Said, N. 2023. Enhanced detoxification methods for the safe reuse of treated olive mill wastewater in irrigation. Environ. Sci. Eur. 35(95). https://doi.org/10.1186/s12302-023-00797-2
  • 7. Asfi, M., Ouzounidou, G., Panajiotidis, S., Therios, I., Moustakas, M. 2012. Toxicity effects of olive-mill wastewater on growth, photosynthesis and pollen morphology of spinach plants. Ecotoxicol. Environ. Saf. 80, 69–75. https://doi.org/10.1016/j.ecoenv.2012.02.030
  • 8. Ayoola, G.A., Coker, H.A., Adesegun, S.A., Adepoju-Bello, A.A., Obaweya, K., Ezennia, E.C., Atangbayila, T.O. 2008. Phytochemical Screening and Antioxidant Activities of Some Selected Medicinal Plants Used for Malaria Therapy in Southwestern Nigeria. Trop. J. Pharm. Res. 7, 1019–1024. https://doi.org/10.4314/tjpr.v7i3.14686
  • 9. Azzam, M.O.J., Hazaimeh, S.A. 2021. Olive mill wastewater treatment and valorization by extraction/ concentration of hydroxytyrosol and other natural phenols. Process Saf. Environ. Prot. 148, 495–523. https://doi.org/10.1016/j.psep.2020.10.030
  • 10. Babić, S., Malev, O., Pflieger, M., Lebedev, A.T., Mazur, D.M., Kužić, A., Čož-Rakovac, R., Trebše, P. 2019. Toxicity evaluation of olive oil mill wastewater and its polar fraction using multiple whole-organism bioassays. Sci. Total Environ. 686, 903–914. https://doi.org/10.1016/j.scitotenv.2019.06.046
  • 11. Badjona, A., Bradshaw, R., Millman, C., Howarth, M., Dubey, B. 2023. Faba Bean Processing: Thermal and Non-Thermal Processing on Chemical, Antinutritional Factors, and Pharmacological Properties. Molecules 28, 5431. https://doi.org/10.3390/molecules28145431
  • 12. Banerjee, A., Roychoudhury, A. 2018. Regulation of photosynthesis under salinity and drought stress. Environ. Photosynth. Future Prospect 134–144.
  • 13. Barbera, A.C., Maucieri, C., Ioppolo, A., Milani, M., Cavallaro, V. 2014. Effects of olive mill wastewater physico-chemical treatments on polyphenol abatement and Italian ryegrass (Lolium multiflorum Lam.) germinability. Water Res. 52, 275–281. https://doi.org/10.1016/j.watres.2013.11.004
  • 14. Bargougui, L., Guergueb, Z., Chaieb, M., Braham, M., Mekki, A., 2019. Agro-physiological and biochemical responses of Sorghum bicolor in soil amended by olive mill wastewater. Agric. Water Manag. 212, 60–67. https://doi.org/10.1016/j.agwat.2018.08.011
  • 15. Benaddi, R., Bouriqi, A., Ouazzani, N., 2022. The Environmental Problem of Olive Mill Waste Water in Morocco: Data Analysis and Characterization. Int. J. Curr. Sci. Res. Rev. 05. https://doi.org/10.47191/ijcsrr/v5-i5-51
  • 16. Benidire, L., Daoui, K., Fatemi, Z.A., Achouak, W., Bouarab, L., Oufdou, K. 2015. Effet du stress salin sur la germination et le développement des plantules de Vicia faba L. (Effect of salt stress on germination and seedling of Vicia faba L.).
  • 17. Benmahioul, B., Daguin, F., Kaid-Harche, M. 2009. Effet du stress salin sur la germination et la croissance in vitro du pistachier (Pistacia vera L.). C. R. Biol. 332, 752–758. https://doi.org/10.1016/j.crvi.2009.03.008
  • 18. Bensidhoum, L., Nabti, E. 2021. Role of Cystoseira mediterranea extracts (Sauv.) in the Alleviation of salt stress adverse effect and enhancement of some Hordeum vulgare L. (barley) growth parameters. SN Appl. Sci. 3(116). https://doi.org/10.1007/s42452-020-03992-5
  • 19. Bibi, A., Elahi, N., Ali, A., Hussain, F., Hussain, N., Ahmad, M. 2012. Nutritional Influence of Salt Stress on the Growth and Nodule Formation of Vicia faba L. Pak. J. Nutr. 11. https://doi.org/10.3923/pjn.2012.660.665
  • 20. Bouknana, D., Hammouti, B., Salghi, R., Jodeh, S., Zarrouk, A., Warad, I., Aouniti, A., Sbaa, M. 2014. Physicochemical Characterization of Olive Oil Mill Wastewaters in the eastern region of Morocco.
  • 21. Bouknana, D., Jodeh, S., Sbaa, M., Hammouti, B., Arabi, M., Darmous, A., Slamini, M., Haboubi, K. 2019. A phytotoxic impact of phenolic compounds in olive oil mill wastewater on fenugreek “Trigonella foenum-graecum.” Environ. Monit. Assess. 191, 1–20. https://doi.org/10.1007/s10661-019-7541-x
  • 22. Bouknana, D., Serghini Caid, H., Hammouti, B., Rmili, R., Hamdani, I. 2021. Diagnostic study of the olive oil industry in the Eastern region of Morocco. Mater. Today Proc., The Fourth edition of the International Conference on Materials & Environmental Science 45, 7782–7788. https://doi.org/10.1016/j.matpr.2021.03.563
  • 23. Bounadi, I., Allali, K., Fadlaoui, A., Dehhaoui, M. 2023. Water Pollution Abatement in Olive Oil Industry in Morocco: Cost Estimates and Policy Implications. Sustainability 15, 4180. https://doi.org/10.3390/su15054180
  • 24. Caruso, C., Maucieri, C., Cavallaro, V., Borin, M., Barbera, A.C. 2018. Olive mill wastewater spreading and AMF inoculation effects in a low-input semi-arid Mediterranean crop succession. Arch. Agron. Soil Sci. 64, 2060–2074. https://doi.org/10.1080/03650340.2018.1476970
  • 25. Cedola, A., Cardinali, A., D’Antuono, I., Conte, A., Del Nobile, M.A. 2020. Cereal foods fortified with by-products from the olive oil industry. Food Biosci. 33, 100490. https://doi.org/10.1016/j.fbio.2019.100490
  • 26. Chatzistathis, T., Koutsos, T. 2017. Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems. Agric. Water Manag. 190, 55–64. https://doi.org/10.1016/j.agwat.2017.05.008
  • 27. Çilesiz, Y., Nadeem, M., Gürsoy, N., Kul, R., Karaköy, T. 2023. Assessing the cooking and quality traits diversity in the seeds of faba bean germplasm. Turk. J. Agric. For. 47, 448–466. https://doi.org/10.55730/1300-011X.3101
  • 28. Dajic, Z. 2006. Salt stress, in: Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, 41–99.
  • 29. Dakhli, R., Maalej, E.M. 2017. Olive mill waste water spreading in southern Tunisia: effects on a barley crop: (Hordeum Vulgare. L). J. Agric. Environ. Int. Dev. JAEID 111, 87–103. https://doi.org/10.12895/jaeid.20171.552
  • 30. Di Serio, M.G., Lanza, B., Mucciarella, M.R., Russi, F., Iannucci, E., Marfisi, P., Madeo, A. 2008. Effects of olive mill wastewater spreading on the physicochemical and microbiological characteristics of soil. Int. Biodeterior. Biodegrad. 62, 403–407. https://doi.org/10.1016/j.ibiod.2008.03.006
  • 31. Dubey, R., Singh, A. 1999. Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol. Plant. 42, 233–239. https://doi.org/10.1023/A:1002160618700
  • 32. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. 2002. Colorimetric Method for Determination of Sugars and Related Substances (WWW Document). ACS Publ. https://doi.org/10.1021/ac60111a017
  • 33. El Hajjouji, H., Pinelli, E., Guiresse, M., Merlina, G., Revel, J.-C., Hafidi, M. 2007. Assessment of the genotoxicity of olive mill waste water (OMWW) with the Vicia faba L.micronucleus test. Mutat. Res. Toxicol. Environ. Mutagen. 634, 25–31. https://doi.org/10.1016/j.mrgentox.2007.05.015
  • 34. El Qarnifa, S., El Antari, A., Hafidi, A. 2019. Effect of Maturity and Environmental Conditions on Chemical Composition of Olive Oils of Introduced Cultivars in Morocco. J. Food Qual. 2019, e1854539. https://doi.org/10.1155/2019/1854539
  • 35. El Sayed, H., El Sayed, A. 2011. Influence of NaCl and Na2SO4 treatments on growth development of broad bean (Vicia Faba, L.) plant. J. Life Sci. 5, 513–523.
  • 36. El Yamani, M., Sakar, E.H., Boussakouran, A., Ghabbour, N., Rharrabti, Y. 2020. Physicochemical and microbiological characterization of olive mill wastewater (OMW) from different regions of northern Morocco. Environ. Technol. 41, 3081–3093. https://doi.org/10.1080/09593330.2019.1597926
  • 37. El-Iklil, Y., Karrou, M., Mrabet, R., Benichou, M. 2002. Effet du stress salin sur la variation de certains metabolites chez Lycopersicon esculentum et Lycopersicon sheesmanii. Can. J. Plant Sci. 82, 177–183. https://doi.org/10.4141/P00-175
  • 38. El-Rhaouat, O., Fareh, M., Sarhan, B., Benyouf, S., Chiguer, H., Rochdi, M., Abdlkader, C., El-Kharrim, K., Belghyti, D. 2014. Statistical and physic-chemical study of the wastewater olive mill of Sidi Kacem city. Int. J. Innov. Appl. Stud. 9, 757–764.
  • 39. Enaime, G., Baçaoui, A., Yaacoubi, A., Belaqziz, M., Wichern, M., Lübken, M. 2020. Phytotoxicity assessment of olive mill wastewater treated by different technologies: effect on seed germination of maize and tomato. Environ. Sci. Pollut. Res. 27, 8034–8045. https://doi.org/10.1007/s11356-019-06672-z
  • 40. Es Saouini, H., Bouzid, S., Trankil, A., Amharref, M., Bernoussi, A.S. 2023. Application of Statistical Methods for the Comparative Study of the Degree of Pollution of Wastewater Collected from Three Olive Mills in Tangier-Tetouan-Al Hoceima Region (Northern Morocco). J. Ecol. Eng. 24, 320–332. https://doi.org/10.12911/22998993/160684
  • 41. Evelin, H., Devi, T.S., Gupta, S., Kapoor, R. 2019. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Front. Plant Sci. 10.
  • 42. Gohari, G., Farhadi, H., Panahirad, S., Zareei, E., Labib, P., Jafari, H., Mahdavinia, G., Hassanpouraghdam, M.B., Ioannou, A., Kulak, M., Fotopoulos, V. 2023. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int. J. Biol. Macromol. 224, 893–907. https://doi.org/10.1016/j.ijbiomac.2022.10.175
  • 43. Goula, A.M., Gerasopoulos, D. 2017. Integrated olive mill waste (OMW) processing toward complete by-product recovery of functional components, in: Olives and Olive Oil as Functional Foods. John Wiley & Sons, Ltd, 177–204. https://doi.org/10.1002/9781119135340.ch9
  • 44. Gueboudji, Z., Kadi, K. 2023. Physicochemical Characterization and Estimation of the Pollution Degree of Olive Oil Mill Wastewaters from the Cold Extraction System and the Traditional System, in: Souabi, S., Anouzla, A. (Eds.), Wastewater from Olive Oil Production: Environmental Impacts, Treatment and Valorisation, Springer Water. Springer International Publishing, Cham, pp. 143–152. https://doi.org/10.1007/978-3-031-23449-1_6
  • 45. Gueboudji, Z., Kadi, K., Nagaz, K. 2021. Extraction and Quantification of Polyphenols of Olive Oil Mill Wastewater from the Cold Extraction of Olive Oil in the Region of Khenchela-Algeria. Genet. Biodivers. J. 5, 116–122. https://doi.org/10.46325/gabj.v5i2.79
  • 46. Hanafi, F., Belaoufi, A., Mountadar, M., Assobhei, O. 2011. Augmentation of biodegradability of olive mill wastewater by electrochemical pre-treatment: Effect on phytotoxicity and operating cost. J. Hazard. Mater. 190, 94–99. https://doi.org/10.1016/j.jhazmat.2011.02.087
  • 47. Hassanein, R., Hashem, H., Khalil, R. 2012. Stigmasterol treatment increases salt stress tolerance of faba bean plants by enhancing antioxidant systems. Plant Omics 5, 476–485.
  • 48. Itai, C., 2018. Role of phytohormones in plant responses to stresses, in: Plant Responses to Environmental Stresses. Routledge, 287–302.
  • 49. Jogawat, A. 2019. Osmolytes and their role in abiotic stress tolerance in plants. Mol. Plant Abiotic Stress Biol. Biotechnol. 91–104. https://doi.org/10.1002/9781119463665.ch5
  • 50. Kähkönen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.-P., Pihlaja, K., Kujala, T.S., Heinonen, M. 1999. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 47, 3954–3962. https://doi.org/10.1021/jf990146l
  • 51. Kamran, M., Xie, K., Sun, J., Wang, D., Shi, C., Lu, Y., Gu, W., Xu, P. 2020. Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). Ecotoxicol. Environ. Saf. 188, 109877. https://doi.org/10.1016/j.ecoenv.2019.109877
  • 52. Khalil, J., Habib, H., Alabboud, M., Mohammed, S. 2021. Olive mill wastewater effects on durum wheat crop attributes and soil microbial activities: A pilot study in Syria. Energy Ecol. Environ. 6, 469–477. https://doi.org/10.1007/s40974-021-00209-2
  • 53. Khalil, J., Jaafar, A.A.K., Habib, H., Bouguerra, S., Nogueira, V., Rodríguez-Seijo, A. 2024. The impact of olive mill wastewater on soil properties, nutrient and heavy metal availability – A study case from Syrian vertisols. J. Environ. Manage. 351, 119861. https://doi.org/10.1016/j.jenvman.2023.119861
  • 54. Khattabi Rifi, S., Aguelmous, A., El Fels, L., Hafidi, M., Souabi, S. 2021. Effectiveness assessment of olive mill wastewater treatment by combined process: Natural flotation and anaerobic‐aerobic biodegradation. Water Environ. J. 35, 986–997. https://doi.org/10.1111/wej.12689
  • 55. Khdair, A., Abu-Rumman, G. 2020. Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes 8, 671. https://doi.org/10.3390/pr8060671
  • 56. Kıpçak, E., Akgün, M. 2018a. Biofuel production from olive mill wastewater through its Ni/Al2O3 and Ru/Al2O3 catalyzed supercritical water gasification. Renew. Energy, SI: Waste Biomass to Biofuel 124, 155–164. https://doi.org/10.1016/j.renene.2017.06.075
  • 57. Kıpçak, E., Akgün, M. 2018b. Biofuel production from olive mill wastewater through its Ni/Al2O3 and Ru/Al2O3 catalyzed supercritical water gasification. Renew. Energy, SI: Waste Biomass to Biofuel 124, 155–164. https://doi.org/10.1016/j.renene.2017.06.075
  • 58. Komilis, D.P., Karatzas, E., Halvadakis, C.P. 2005. The effect of olive mill wastewater on seed germination after various pretreatment techniques. J. Environ. Manage. 74, 339–348. https://doi.org/10.1016/j.jenvman.2004.09.009
  • 59. Koutsos, T.M., Chatzistathis, T., Balampekou, E.I. 2018. A new framework proposal, towards a common EU agricultural policy, with the best sustainable practices for the re-use of olive mill wastewater. Sci. Total Environ. 622–623, 942–953. https://doi.org/10.1016/j.scitotenv.2017.12.073
  • 60. Maaouia-Houimli, S. I., Denden, M., Dridi-Mouhandes, B., & Mansour-gueddes, S. B. (2011). Caractéristiques de la croissance et de la production en fruits chez trois variétés de piment (Capsicum annuum L.) sous stress salin. Tropicultura, 29(2), 75–81.
  • 61. Magdich, S., Abid, W., Boukhris, M., Rouina, B.B., Ammar, E. 2016. Effects of long-term olive mill wastewater spreading on the physiological and biochemical responses of adult Chemlali olive trees (Olea europaea L.). Ecol. Eng. 97, 122–129. https://doi.org/10.1016/j.ecoleng.2016.09.004
  • 62. MANE, A., Karadge, B., S., S. 2010. Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon Nardus L. Rendle. J. Chem. Pharm. Res. 2, 338–347.
  • 63. Mansour, M.M.F., Ali, E.F. 2017. Evaluation of proline functions in saline conditions. Phytochemistry 140, 52–68. https://doi.org/10.1016/j.phytochem.2017.04.016
  • 64. Martínez-Noël, G.M.A., Tognetti, J.A. 2018. Chapter 22 - Sugar Signaling Under Abiotic Stress in Plants, in: Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N. (Eds.), Plant Metabolites and Regulation Under Environmental Stress. Academic Press, pp. 397–406. https://doi.org/10.1016/B978-0-12-812689-9.00022-4
  • 65. Massoudinejad, M.R., Arman, K., Aghayani, E. 2014. Ecological risk assessment to olive oil mill wastewater (OMW) with bioassay on plant species. Ecol. Environ. Conserv. 20, 229–234.
  • 66. Mechri, B., Cheheb, H., Boussadia, O., Attia, F., Ben Mariem, F., Braham, M., Hammami, M. 2011. Effects of agronomic application of olive mill wastewater in a field of olive trees on carbohydrate profiles, chlorophyll a fluorescence and mineral nutrient content. Environ. Exp. Bot. 71, 184–191. https://doi.org/10.1016/j.envexpbot.2010.12.004
  • 67. Meftah, O., Guergueb, Z., Braham, M., Sayadi, S., Mekki, A. 2019. Long term effects of olive mill wastewaters application on soil properties and phenolic compounds migration under arid climate. Agric. Water Manag. 212, 119–125. https://doi.org/10.1016/j.agwat.2018.07.029
  • 68. Mekki, A., Aloui, A., Guergueb, Z., Braham, M. 2018. Agronomic valorization of olive mill wastewaters: effects on Medicago sativa growth and soil characteristics. Clean–Soil Air Water, 46, 1800100. https://doi.org/10.1002/clen.201800100
  • 69. Monneveux, P., Nemmar, M. 1986. Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.) : étude de l’accumulation de la proline au cours du cycle de développement. Agronomie 6, 583–590. https://doi.org/10.1051/agro:19860611
  • 70. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • 71. Munns, R., James, R.A., Läuchli, A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57, 1025–1043. https://doi.org/doi.org/10.1093/jxb/erj100
  • 72. Mzabri, I., Rimani, M., Kouddane, N., Berrichi, A. 2021. Study of the Effect of Pretreatment of Corms by Different Concentrations of Gibberellic Acid and at Different Periods on the Growth, Flowering, and Quality of Saffron in Eastern Morocco. Adv. Agric. 2021, e9979827. https://doi.org/10.1155/2021/9979827
  • 73. Paraskeva, P., Diamadopoulos, E. 2006. Technologies for olive mill wastewater (OMW) treatment: a review. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 81, 1475–1485.
  • 74. Paredes, C., Cegarra, J., Bernal, M.P., Roig, A. 2005. Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties. Environ. Int., Recent Advances in Bioremediation, 31, 305–312. https://doi.org/10.1016/j.envint.2004.10.007
  • 75. Parida, A.K., Das, A.B., 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60, 324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • 76. Parween, A., Singh, V., Bajpai, M., 2020. Abiotic Stress and Red Clover: A Less Explored Area of Research. Adv. Res. 1–5. https://doi.org/10.9734/air/2020/v21i630207
  • 77. Peng, J., Liu, J., Zhang, L., Luo, J., Dong, H., Ma, Y., Zhao, X., Chen, B., Sui, N., Zhou, Z., Meng, Y. 2016. Effects of Soil Salinity on Sucrose Metabolism in Cotton Leaves. PLOS ONE 11, e0156241. https://doi.org/10.1371/journal.pone.0156241
  • 78. Popolizio, S., Fracchiolla, M., Leoni, B., Cazzato, E., Camposeo, S. 2022. Phytotoxic Effects of Retentates Extracted from Olive Mill Wastewater Suggest a Path for Bioherbicide Development. Agronomy, 12, 1378. https://doi.org/10.3390/agronomy12061378
  • 79. Rahneshan, Z., Nasibi, F., Moghadam, A.A. 2018. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact. 13, 73–82. https://doi.org/10.1080/17429145.2018.1424355
  • 80. Rais, Z., El Haji, M., Benabbou, M., Majbar, Z., Lahlou, K., Taleb, M., Zaytouni, Y., Rheribi, R., Bouka, H., Nawdali, M., 2017. Margines : traitement, valorisation dans la germination des graines de tomate et dans la filière de compostage. Rev. Sci. L’eau J. Water Sci. 30, 57–62. https://doi.org/10.7202/1040064ar
  • 81. Rekik, I., Chaabane, Z., Missaoui, A., Bouket, A.C., Luptakova, L., Elleuch, A., Belbahri, L., 2017. Effects of untreated and treated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum (Sorghum bicolor L. Moench), alfalfa (Medicago sativa L. and fescue (Festuca arundinacea Schreb). J. Hazard. Mater. 326, 165–176. https://doi.org/10.1016/j.jhazmat.2016.12.033
  • 82. Rusan, M.J.M., Albalasmeh, A.A., Zuraiqi, S., Bashabsheh, M. 2015. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.). Environ. Sci. Pollut. Res. 22, 9127– 9135. https://doi.org/10.1007/s11356-014-4004-3
  • 83. Saadallah, K., Drevon, J.-J., Abdelly, C., 2001. Nodulation et croissance nodulaire chez le haricot (Phaseolus vulgaris) sous contrainte saline. Agronomie 21, 627–634. https://doi.org/10.1051/agro:2001154
  • 84. Saf, C., Gondet, L., Villain-Gambier, M., Belaqziz, M., Trebouet, D., Ouazzani, N., 2023. Investigation of the agroecological applications of olive mill wastewater fractions from the ultrafiltration-nanofiltration process. J. Environ. Manage. 333, 117467. https://doi.org/10.1016/j.jenvman.2023.117467
  • 85. Sami, F., Yusuf, M., Faizan, M., Faraz, A., Hayat, S., 2016. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109, 54–61. https://doi.org/10.1016/j.plaphy.2016.09.005
  • 86. Sampedro, I., Aranda, E., Martı́n, J., Garcı́a-Garrido, J.M., Garcı́a-Romera, I., Ocampo, J.A., 2004. Saprobic fungi decrease plant toxicity caused by olive mill residues. Appl. Soil Ecol. 26, 149–156. https://doi.org/10.1016/j.apsoil.2003.10.011
  • 87. Sdiri Ghidaoui, J., Bargougui, L., Chaieb, M., Mekki, A., 2019. Study of the phytotoxic potential of olive mill wastewaters on a leguminous plant ‘Vicia faba L.’ Water Sci. Technol. 80, 1295–1303. https://doi.org/10.2166/wst.2019.373
  • 88. Sdouga, D., Ben Amor, F., Ghribi, S., Kabtni, S., Tebini, M., Branca, F., Trifi-Farah, N., Marghali, S. 2019. An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Ecotoxicol. Environ. Saf. 172, 45–52. https://doi.org/10.1016/j.ecoenv.2018.12.082
  • 89. Shafi, A., Zahoor, I., Mushtaq, U. 2019. Proline accumulation and oxidative stress: Diverse roles and mechanism of tolerance and adaptation under salinity stress. Salt Stress Microbes Plant Interact. Mech. Mol. Approaches, 2, 269–300. https://doi.org/10.1007/978-981-13-8805-7_13
  • 90. Sidari, M., Santonoceto, C., Anastasi, U., Preiti, G., Muscolo, A. 2008. Variations in four genotypes of lentil under NaCl-salinity stress. Am. J. Agric. Biol. Sci. 3, 410–416.
  • 91. Sierra, J., Martí, E., Garau, M.A., Cruañas, R. 2007. Effects of the agronomic use of olive oil mill wastewater: Field experiment. Sci. Total Environ., Spanish Research on Soil Damage 378, 90–94. https://doi.org/10.1016/j.scitotenv.2007.01.009
  • 92. Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., Savouré, A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447. https://doi.org/10.1093/aob/mcu239
  • 93. Souilem, S., El-Abbassi, A., Kiai, H., Hafidi, A., Sayadi, S., Galanakis, C.M. 2017. Chapter 1 - Olive oil production sector: environmental effects and sustainability challenges, in: Galanakis, C.M. (Ed.), Olive Mill Waste. Academic Press, 1–28. https://doi.org/10.1016/B978-0-12-805314-0.00001-7
  • 94. Steen, J.E., B, P.M., Henrik, H.-N. 2010. Faba bean in cropping systems. Field Crops Res. 115. https://doi.org/10.1016/j.fcr.2009.10.008
  • 95. Stillitano, T., Falcone, G., De Luca, A.I., Piga, A., Conte, P., Strano, A., Gulisano, G. 2019. A Life Cycle Perspective to Assess the Environmental and Economic Impacts of Innovative Technologies in Extra Virgin Olive Oil Extraction. Foods 8, 209. https://doi.org/10.3390/foods8060209
  • 96. Talaat, N.B. 2019. Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Sci. Hortic. 250, 254–265. https://doi.org/10.1016/j.scienta.2019.02.052
  • 97. Tosti, S., Accetta, C., Fabbricino, M., Sansovini, M., Pontoni, L. 2013. Reforming of olive mill wastewater through a Pd-membrane reactor. Int. J. Hydrog. Energy 38, 10252–10259. https://doi.org/10.1016/j.ijhydene.2013.06.027
  • 98. Tran, H., Vu, G., Mahunu, A., Chien, D., Arditti, J., Ernst, R. 1995. Chlorophyll formation in flowers and fruits of Phalaenopsis (Orchidaceae) species and hybrids following pollination. Am. J. Bot. 82, 1089–1094. https://doi.org/10.1002/j.1537-2197.1995.tb11578.x
  • 99. Tsigkou, K., Terpou, A., Treu, L., Kougias, P.G., Kornaros, M. 2022. Thermophilic anaerobic digestion of olive mill wastewater in an upflow packed bed reactor: Evaluation of 16S rRNA amplicon sequencing for microbial analysis. J. Environ. Manage. 301, 113853. https://doi.org/10.1016/j.jenvman.2021.113853
  • 100. Tzortzakis, N., Chrysargyris, A. 2024. Olive-mill and grape-mill residue impact the growth, physiology and nutrient status of grapevines young cuttings. Sustain. Chem. Pharm. 37, 101362. https://doi.org/10.1016/j.scp.2023.101362
  • 101. Yalcuk, A., Pakdil, N.B., Turan, S.Y. 2010. Performance evaluation on the treatment of olive mill waste water in vertical subsurface flow constructed wetlands. Desalination 262, 209–214. https://doi.org/10.1016/j.desal.2010.06.013
  • 102. Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi‐Shinozaki, K., Wada, K., Harada, Y., Shinozaki, K. 1995. Correlation between the induction of a gene for Δ1‐pyrroline‐5‐carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J. 7, 751–760. https://doi.org/10.1046/j.1365-313X.1995.07050751.x
  • 103. Zahra El Hassani, F., El Karkouri, A., Errachidi, F., Merzouki, M., Benlemlih, M. 2023. The impact of Olive Mill Wastewater spreading on soil and plant in arid and semi-arid areas. Environ. Nanotechnol. Monit. Manag. 20, 100798. https://doi.org/10.1016/j.enmm.2023.100798
  • 104. Zaier, H., Walid, C., Rajhi, H., Bouzidi, D., Roussos, S., Rhouma, A. 2017. Physico-chemical and microbiological characterization of olive mill wastewater (OMW) of different regions of Tunisia (North, Sahel, South). Caractérisation physico-chimique et microbiologique des margines de différentes régions de la Tunisie (Nord, Sahel, Sud) 48, 2888–2897.
  • 105. Zbakh, H., El Abbassi, A. 2012. Potential use of olive mill wastewater in the preparation of functional beverages: A review. J. Funct. Foods 4, 53–65. https://doi.org/10.1016/j.jff.2012.01.002
  • 106. Zenjari, B., El Hajjouji, H., Ait Baddi, G., Bailly, J.-R., Revel, J.-C., Nejmeddine, A., Hafidi, M. 2006. Eliminating toxic compounds by composting olive mill wastewater–straw mixtures. J. Hazard. Mater. 138, 433–437. https://doi.org/10.1016/j. jhazmat.2006.05.071
  • 107. Zucconi, F., Forte, M., Monaco, A., Bertoldi, D.E. 1981. Biological evaluation of compost maturity.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c449ec71-bdfb-4efa-a0d7-5443c551d8c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.