Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Assessment of the state of a pulse power supply requires effective and accurate methods to measure and reconstruct the tracking error. This paper proposes a tracking error measurement method for a digital pulse power supply. A de-noising algorithm based on Empirical Mode Decomposition (EMD) is used to analyse the energy of each Intrinsic Mode Function (IMF) component, identify the turning point of energy, and reconstruct the signal to obtain the accurate tracking error. The effectiveness of this EMD method is demonstrated by simulation and actual measurement. Simulation was used to compare the performance of time domain filtering, wavelet threshold de-noising, and the EMD de-noising algorithm. In practical use, the feedback of current on the prototype of the power supply is sampled and analysed as experimental data.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
339--353
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wzory
Twórcy
autor
- Huaqiao University, School of Information Science and Engineering, Xiamen 361021, China
autor
- Huaqiao University, School of Information Science and Engineering, Xiamen 361021, China
autor
- Huaqiao University, School of Information Science and Engineering, Xiamen 361021, China
Bibliografia
- [1] Wu, F., Gao, D., Shi, C., Huang, Y., Cui, Y., Yan, H., Zhang, H., Wang, B., Li X. (2016). A new type of accelerator power supply based on voltage-type space vector PWM rectification technology. Nuclear Instruments & Methods in Physics Research Section A, 826, 1-5.
- [2] Wang, R., et al. (2013). A new digital pulse power supply in heavy ion research facility in Lanzhou. Nuclear Instruments & Methods in Physics Research Section A, 727, 46-50.
- [3] Zhao, J., et al. (2015). Implementation of an FPGA controller for correction power supplies in heavy ion synchrotron. Nuclear Instruments & Methods in Physics Research Section A, 777, 167-171.
- [4] Wang, R., et al. (2013). Synchronization Method of Digital Pulse Power Supply for Heavy Ions Accelerator in Lanzhou. Atomic Energy Science & Technology, 47(4), 683-686 (in Chinese).
- [5] Borkowski, D. (2018). An Improved Method of Busbar Voltage Reconstruction from Signals of Electric Field Sensors Installed in an Indoor MV Substation. Metrology and Measurement Systems, 25(1), 71-86.
- [6] Wang, F., Yu, N. (2017). An Ultracompact Butterworth Low-Pass Filter Based on Coaxial Through-Silicon Vias. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(3), 1164-1167.
- [7] Hilton, M.L., Ogden, R.T. (1997). Data analytic wavelet threshold selection in 2-D signal denoising. IEEE Transactions on Signal Processing, 45(2), 496-500.
- [8] Smith, C.B., Agaian, S., Akopian, D. (2008). A Wavelet-Denoising Approach Using Polynomial Threshold Operators. IEEE Signal Processing Letters, 15, 906-909.
- [9] Prucnal, M., Polak, A.G. (2017). Effect of Feature Extraction on Automatic Sleep Stage Classification by Artificial Neural Network. Metrology and Measurement Systems, 24(2), 229-240.
- [10] Yan, H., Gao, D., Zhou, Z., Wang, J. (2010). Research on the Test Method of Tracking Error for Pulse Switching Power Supply. Power Supply Technologies & Applications, 13(2), 9-11 (in Chinese).
- [11] Wang, R. (2013). Research and design of dedicated digital power supply regulator for medical heavy ion accelerator. Ph.D. Thesis. University of Chinese Academy of Sciences (in Chinese).
- [12] Donoho, D.L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613-627.
- [13] Ching, P.C., So, H.C., Wu, S.Q. (1999). On wavelet denoising and its applications to time delay estimation. IEEE Transactions on Signal Processing, 47(10), 2879-2882.
- [14] Hu, X., Peng, S., Hwang, W.-L. (2012). EMD Revisited: A New Understanding of the Envelope and Resolving the Mode-Mixing Problem in AM-FM Signals. IEEE Transactions on Signal Processing, 60(3), 1075-1086.
- [15] Huang, N. E., Wu, Z. (2008). A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46(2), 1-23.
- [16] Boudraa, A.-O., Cexus, J.-C. (2007). EMD-Based Signal Filtering. IEEE Transactions on Instrumentation & Measurement, 56(6), 2196-2202.
- [17] Rilling, G., Flandrin, P. (2008). One or Two Frequencies? The Empirical Mode Decomposition Answers. IEEE Transactions on Signal Processing, 56(1), 85-95.
- [18] Yaslan, Y., Bican, B. (2017). Empirical mode decomposition based denoising method with support vector regression for time series prediction: A case study for electricity load forecasting. Measurement, 103, 52-61.
- [19] Wang, R., Sun, S., Guo, X., Yan, D. (2018). EMD Threshold Denoising Algorithm Based on Variance Estimation. Circuits Systems & Signal Processing, 37(12), 5369-5388.
- [20] Lu, S., Wang, X., Yu, H., Dong, H., Yang, Z. (2017). Trend extraction and identification method of cement burning zone flame temperature based on EMD and least square. Measurement, 111, 208-215.
- [21] Khaldi, K., Boudraa, A O. (2012). On signals compression by EMD. Electronics Letters, 48(21), 1329-1331.
- [22] Li, S., Li, H., Ma, L. (2013). A Real Signal Model-Based Method for Processing Boundary Effect in Empirical Mode Decomposition. 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, Shenyang, China.
- [23] Deng, Y., Wang, W., Qian, C., Wang, Z., Dai, D. (2001). Boundary-processing-technique in EMD method and Hilbert transform. Chinese Science Bulletin, 46(1), 954-960.
- [24] Zeng, K., He, M. (2004). A simple boundary process technique for empirical mode decomposition. 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2004), Anchorage, AK, USA.
- [25] Wu, Z., Huang, N.E. (2009). Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1-41.
- [26] Damasevicius, R., Napoli, C., Sidekerskiene, T., Wozniak, M. (2017). IMF mode demixing in EMD for jitter analysis. Journal of Computational Science, 22, 240-252.
- [27] Flandrin, P., Rilling, G., Goncalves, P. (2004). Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 11(2), 112-114.
- [28] Li, H., Wang, X., Chen, L., Li, E. (2014). Denoising and R-Peak Detection of Electrocardiogram Signal Based on EMD and Improved Approximate Envelope. Circuits Systems & Signal Processing, 33(4), 1261-1276.
- [29] Li, M., Wu, X., Liu, X. (2015). An Improved EMD Method for Time-Frequency Feature Extraction of Telemetry Vibration Signal Based on Multi-Scale Median Filtering. Circuits Systems & Signal Processing, 34(3), 815-830.
- [30] Li, S., Zhou, W., Yuan, Q., et al. (2013). Feature extraction and recognition of ictal EEG using EMD and SVM. Computers in Biology & Medicine, 43(7), 807-816.
- [31] Lu, Y., Saniie, J. (2016). A comparative study of singular spectrum analysis and empirical mode decomposition for ultrasonic NDE. 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France.
- [32] Boudraa, A.-O., Cexus, J.-C. (2006). Denoising via empirical mode decomposition. Proc. of Second International Symposium on Communications, Control and Signal Processing (ISCCSP 2006), Marrakesh, Morocco.
- [33] Zhu, S., Liu, L., Yao, Z. (2018). The application of threshold empirical mode decomposition de-noising algorithm for battlefield ambient noise. International Journal of Modeling, Simulation, and Scientific Computing, 9(4), 1850027.
- [34] Che, L., Di, Y., Gu, X., et al. (2017). A signal de-noising method for gas switch discharge based on EMD and energy ratio.2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China.
Uwagi
EN
1. This research was supported by Institute of Modern Physics, Chinese Academy of Sciences. The authors thank the Institute for providing the power supply prototype and experimental environments. This work is supported by the National Natural Science Foundation of China [grant number 51707068], the Natural Science Foundation of Fujian Province [grant number 2017J01097].
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c448bd63-3c0c-41ce-985f-2e7d0ea147cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.