PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deep learning in the classification and recognition of cardiac activity patterns

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrocardiography is an examination performed frequently in patients experiencing symptoms of heart disease. Upon a detailed analysis, it has shown potential to detect and identify various activities. In this article, we present a deep learning approach that can be used to analyze ECG signals. Our research shows promising results in recognizing activity and disease patterns with nearly 90% accuracy. In this paper, we present the early results of our analysis, indicating the potential of using deep learning algorithms in the analysis of both onedimensional and two–dimensional data. The methodology we present can be utilized for ECG data classification and can be extended to wearable devices. Conclusions of our study pave the way for exploring live data analysis through wearable devices in order to not only predict specific cardiac conditions, but also a possibility of using them in alternative and augmented communication frameworks.
Rocznik
Strony
79--85
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Department of Computer Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Computer Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Control Systems and Mechatronics, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] A. Lyon, A. Minchol´e, J. Martinez, P. Laguna, and B. Rodriguez, “Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances,” R Soc Interface, vol. 15, no. 138, 2018.
  • [2] D. Hatzinakos, F. Agrafioti, and A. K. Anderson, “Ecg pattern analysis for emotion detection,” IEEE Transactions on Affective Computing, vol. 3, no. 1, pp. 102-115, 2012.
  • [3] S. Brás, J. Ferreira, S. Soares, and A. Pinho, “Biometric and emotion identification: An ecg compression based method,” Frontiers in Psychology, vol. 9, p. 467, 2018. [Online]. Available: doi: 10.3389/fpsyg.2018.00467
  • [4] M. Surowiec, P. Ciskowski, K. Kluwak, and Ł. Jeleń, “Deep learning ecg signal analysis: Description and preliminary results,” in Dependable Computer Systems and Networks, W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, Eds. Cham: Springer Nature Switzerland, 2023, pp. 309-318.
  • [5] A. Bulagang, N. Weng, J. Mountstephens, and J. Teo, “A review of recent approaches for emotion classification using electrocardiography and electrodermography signals,” Informatics in Medicine Unlocked, vol. 20, p. 100363, 2020.
  • [6] J. Selvaraj, M. Murugappan, K. Wan, and S. Yaacob, “Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst,” BioMedical Engineering OnLine, vol. 12, no. 1, p. 44, 2013. [Online]. Available: doi:10.1186/1475-925X-12-44
  • [7] F. Agrafioti, D. Hatzinakos, and A. K. Anderson, “Ecg pattern analysis for emotion detection,” IEEE Transactions on Affective Computing, vol. 3, no. 1, pp. 102-115, 2012. [Online]. Available: doi:10.1109/T-AFFC.2011.28
  • [8] J. Liu, J. Chen, H. Jiang, W. Jia, Q. Lin, and Z. Wang, “Activity recognition in wearable ecg monitoring aided by accelerometer data,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1-4. [Online]. Available: doi:10.1109/ISCAS.2018.8351076
  • [9] P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers, B. J. Deal, E. W. Hancock, G. van Herpen, J. A. Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm, P. Rautaharju, and G. S. Wagner, “Recommendations for the standardization and interpretation of the electrocardiogram. part i,” Circulation, vol. 115, pp. 1306-1324, 2007.
  • [10] A. Atkielski, “Schematic diagram of normal sinus rhythm for a human heart as seen on ecg, two periods forming a rr-interval.” 2009, [Wikipedia Online; accessed 19-February-2021]. [Online]. Available: https://en.wikipedia.org/wiki/File:ECG-RRinterval.svg
  • [11] M. Etiwy, Z. Akhrass, L. Gillinov, A. Alashi, R. Wang, G. Blackburn, S. Gillinov, D. Phelan, A. Gillinov, P. Houghtaling, H. Javadikasgari, and M. Desai, “Accuracy of wearable heart rate monitors in cardiac rehabilitation,” Cardiovascular Diagnosis and Therapy, vol. 9, 05 2019. [Online]. Available: doi:10.21037/cdt.2019.04.08
  • [12] R. Gilgen-Ammann, T. Schweizer, and T. Wyss, “Rr interval signal quality of a heart rate monitor and an ecg holter at rest and during exercise,” Eur J Appl Physiol, vol. 119, p. 1525-1532, 2019. [Online]. Available: doi:10.1007/s00421-019-04142-5
  • [13] D. Azariadi, V. Tsoutsouras, S. Xydis, and D. Soudris, “Ecg signal analysis and arrhythmia detection on IoT wearable medical devices,” in 2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, 5 2016.
  • [14] J. Hua, Y. Xu, J. Tang, J. Liu, and J. Zhang, “Ecg heartbeat classification in compressive domain for wearable devices,” Journal of Systems Architecture, vol. 104, p. 101687, 3 2020.
  • [15] S. Saadatnejad, M. Oveisi, and M. Hashemi, “Lstm-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 2, pp. 515-523, 2 2020.
  • [16] R. Krishnan and M. Ramesh, “Qrs axis based classification of electrode interchange in wearable ECG devices,” in Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare - ”Transforming healthcare through innovations in mobile and wireless technologies”. ICST, 2015.
  • [17] P. Pławiak, “Novel methodology of cardiac health recognition based on ecg signals and evolutionary-neural system,” Expert Systems with Applications, vol. 92, pp. 334–349, 2018. [Online]. Available: doi:10.1016/j.eswa.2017.09.022
  • [18] M. Kadbi, J. Hashemi, H. Mohseni, and A. Maghsoudi, “Classification of ECG arrhythmias based on statistical and time-frequency features,” in IET 3rd International Conference MEDSIP 2006. Advances in Medical, Signal and Information Processing. IEE, 2006.
  • [19] T. Teijeiro, C. A. Garcia, D. Castro, and P. Flix, “Arrhythmia Classification from the Abductive Interpretation of Short Single-Lead ECG Records,” in Computing in Cardiology Conference (CinC). Computing in Cardiology, sep 14 2017.
  • [20] A. Ullah, S. M. Anwar, M. Bilal, and R. M. Mehmood, “Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation,” Remote Sensing, vol. 12, no. 10, p. 1685, may 25 2020.
  • [21] S. Zeybekoglu and M. Ozkan, “Classification of ECG Arrythmia beats with Artificial Neural Networks,” in 2010 15th National Biomedical Engineering Meeting. IEEE, 4 2010.
  • [22] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar, M. Milutinovič, M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Štajdohar, L. Umek, L. Žagar, J. Žbontar, M. Žitnik, and B. Zupan, “Orange: Data mining toolbox in python,” Journal of Machine Learning Research, vol. 14, pp. 2349-2353, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c430cef0-4413-4a2d-b77b-5a8be8dc3869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.