PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phenomena at interface of saline aquifer and claystone caprock under conditions of CO2 storage

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When modelling the impact of the hydrogeochemical processes of CO2 sequestration on the contact zone of a saline sandstone aquifer and a claystone caprock in the Upper Silesian Coal Basin, small decreases in porosity were noted, visible mainly in the aquifer rocks. They were due to the degradation of kaolinite, albite and muscovite, and the recrystallization of K-feldspar and quartz. The porosity of the caprock remained almost unchanged, which was to the advantage of the integrity of the repository. In major parts of the aquifer and caprock zone, the mineral trapping of CO2 has beneficial effects, but at the interface of the aquifer and the insulating layer, in the basal part of the caprock, a release of carbon dioxide may occur temporarily, associated with the dissolution of calcite.
Rocznik
Strony
255–--262
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Institute for Applied Geology, 2 Akademicka St., 44-100 Gliwice, Poland
Bibliografia
  • 1. Bethke, C. M., 2008. Geochemical and Biogeochemical Reaction Modeling. Cambridge University Press, Cambridge, 543 pp.
  • 2. Bildstein, O., Kerveva, C., Lagnea, V., Delaplac, P., Credo, A., Audigan, P., Perfetti, E., Jacquemet, N. & Jullien, M., 2010. Integrative modeling of caprock integrity in the context of CO2 storage: evolution of transport and geochemical properties and impact on performance and safety assessment. Oil & Gas Science and Technology - Revue de IFP, 65: 485-502.
  • 3. Corey, A. T., 1954. The interrelations between gas and oil relative permeabilities. Producers Monthly, 19: 38-41.
  • 4. Credoz, A., Bildstein, O., Jullien, M., Raynal, J., Petronin, J. C., Lillo, M., Pozo, C. & Geniaut, G., 2009. Experimenial and modeling study of geochemical reactivity between clayey caprocks and CO2 in geological storage conditions. Energy Procedia, 1: 3445-3452.
  • 5. Gaus, I., Azaroual, M. & Czernichowski-Lauriol, I., 2005. Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chemical Geology, 217: 319-337.
  • 6. Johnson, J. W., Nitao, J. J. & Knauss, K. G., 2004. Reactive transport modeli ng of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms, and sequestration partitioning. In: Baines, S. J. & Worden, R. H. (eds), Geologic Storage of Carbon Dioxide. Geological Society, Special Publication, 233: 107-128.
  • 7. Karwasiecka, M., 2001. The geothermal field of the Upper Silesian Coal Basin. Technika Poszukiwań Geologicznych, Geosynoptyka i Geotermia. 40: 41-49. [In Polish, English Summary].
  • 8. Kaszuba, J. P., Janecky, D. R. & Snow, M. G., 2005. Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: relevance to the integrity of a geologic carbon repository. Chemical Geology, 217: 277-293.
  • 9. Labus, K., 2005. Origin of groundwater mineralization in coarsegrained Lower Badenian aquifer in the Czech part of the Upper Silesian Coal Basin. Geological Quarterly, 49: 75-82.
  • 10. Labus, K., 2007. Identification of the processes controlling the groundwater chemical composition under mine drainage conditions within the south-western part of the Upper Silesian Coal Basin. Zeszyty Naukowe Politechniki Śląskiej, 1769: 1-247. [In Polish, English summary].
  • 11. Labus, K. & Bujok, P., 2011. CO2 mineral sequestration mechanisms and capacity of saline aquiiers of the Upper Silesian Coal Basin (Central Europe) - Modeling and experimental verification. Energy, 36: 4974-4982.
  • 12. Labus, K., Tarkowski, R. & Wdowin, M., 2010. Assessment of CO2 sequestration capacity based on hydrogeochemical model of water-rock-gas interactions in the potential storage site within the Bełchatów area (Potand). Mineral Resources Management, 36: 69-84.
  • 13. Liu, F., Lu, P., Griffith, C., Hedges, S. W., Soong, Y., Hellevang, H. & Zhu, C., 2012. CO2-brine-caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. International Journal of Greeonhouse Gas Control, 7: 153-167.
  • 14. Navarre-Sitchler, A., Muouzakis, K., Heath, J., Dewers, T., Rother, G., Wang, X, Kaszuba, J. & McCray, J., 2011. Changes to porosity and pore structure of mudstones resulting from reaction with CO2 and brine. MineralogicalMagazine, 75: 1527.
  • 15. Palandri, J. L. & Kharaka, Y. K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. US Geological Survey. Open File Report, 2004-1068: 1-64.
  • 16. Pruess, K., 2004. The TOUGH Codes - A famtly of simutation tools for multiphase flow and transport processes in permeable media. Vadose Zone Journal, 3: 738-746.
  • 17. Spycher, N. & Pruess, K., 2005. CO2-H2O mixtures in the geological sequestration of CO2: II. Partitioning in chloride brines at 12-100°C and up to 600 bar. Geochimica et Cosmochimica Acta, 69: 3309-3320.
  • 18. Steefel, C. I., 2001. Crunch. Lawrence Livermore National Laboratory, Livermore, California, 76 pp.
  • 19. van Genuchten, M. T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898.
  • 20. Xiao, Y., Xu, T. & Pruess, K., 2009. The effects of gas-fluid-rock interactions on CO2 injection and storage: insights from reactive transport modeling. Energy Procedia, 1: 1783-1790.
  • 21. Xu, T., Apps, J. A. & Pruess, K., 2005. Mineral sequestration of carbon dioxide in a sandstone-shale system. Chemical Geology, 217: 295-318.
  • 22. Xu, T., Apps J. A. Pruess, K. & Yamamoto, H., 2007. Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation. Chemical Geology, 242: 319-346.
  • 23. Xu, T., Sonnenthal, E. L., Spycher, N. & Pruess, K., 2006. TOURGHREACT: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Computer & Geosciences, 32: 145-165.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c42c6e81-94b1-4b06-970e-009e3b216815
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.