PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of joint sets orientation in the Lower Paleozoic shales exposed in Scania (SW Sweden) and concealed in N Poland : a multi-methodological approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Lower Paleozoic shales of SW Sweden and Eastern Pomerania (Poland) have a common history related to the depositional and tectonic evolution of the Baltic Basin. The major tectonic events are recorded, among others, as joints, which are either exposed in outcrops in SW Sweden or recognised in deep boreholes located in Pomerania. We present a comparison of the regional joint systems recognized by multiple methods in the studied region. In effect of a statistical compilation of measurements, five joint sets (named JS 1 to JS 5) were identified, traceable between Eastern Pomerania and SW Sweden. Our analysis showed a general consistency of joint set orientations, independent of their distance to the Tornquist tectonic zone passing through the study region. Three of the joint sets, JS 1 striking NNE, JS 2 striking WNW, and JS 3 striking NNW, are found to be the most frequent sets, occurring in most sites. Having more constant orientation, the JS 1 and JS 3 served as indicators of possible rotation of the tectonic block or stress field in the region. JS 1 and JS 2 are interpreted as an effect of late Carboniferous stress relaxation after Variscan collision, while JS 3 and the E–W striking JS 4 might be related to the Early Devonian Caledonian compressive stage.
Rocznik
Strony
s. 258--275
Opis fizyczny
Bibliogr. 58 poz., fot., rys., tab., wykr.
Twórcy
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
autor
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Assali, P., Grussenmeyer, P., Villemin, T., Pollet, N., Viguier, F., 2014. Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. Journal of Structural Geology, 66: 102-114.
  • 2. Barton, C., Moos, D., 2010. Geomechanical wellbore imaging: key to managing the asset life cycle. AAPG Memoir, 92: 81-112.
  • 3. Barton, C.A., Zoback, M.D., 2002. Discrimination of natural fractures from drilling-induced wellbore failures in wellbore image data - implications for reservoir permeability. SPE Reservoir Evaluation & Engineering, 5: 249-254.
  • 4. Beier, H., Maletz, J., Bohnke, A., 2000. Development of an Early Palaeozoic foreland basin at the SW margin of Baltica. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 218: 129-152.
  • 5. Bellian, J.A., Kerans, C., Jennette, D.C., 2005. Digital outcrop models: Applications of terrestrial scanning lidar technology in stratigraphic modeling. Journal of Sedimentary Research, 75: 166-176.
  • 6. Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A., 2014. Ground-based and UAV-Based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69: 163-178.
  • 7. Bergerat, F., Angelier, J., Andreasson, P.G., 2007. Evolution of paleostress fields and brittle deformation of the Tornquist Zone in Scania (Sweden) during Permo-Mesozoic and Cenozoic times. Tectonophysics, 444: 93-110.
  • 8. Bertrand, L., Géraud, Y., Le Garzic, E., Place, J., Diraison, M., Walter, B., Haffen, S., 2015. A multiscale analysis of a fracture pattern in granite: A case study of the Tamariu granite, Catalunya, Spain. Journal of Structural Geology, 78: 52-66.
  • 9. Bobek, K., Jarosiński, M., 2018. Parallel structural interpretation of drill cores and microresistivity scanner images from gas-bearing shale (Baltic Basin, Poland). Interpretation, 6: 25-38.
  • 10. Bobek, K., Jarosiński, M., 2021. Modifications of methods for the fracture analysis from borehole data in application to shale formations. Geological Quarterly, 65: 23.
  • 11. Bobek, K., Jarosinski, M., Pachytel, R., 2017. Tectonic Structures in Shale That You Do Not Include in Your Reservoir Model. 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA (https://onepetro.org/ARMAUSRMS/proceedings-abstract/ARMA17/All-ARMA17/ARMA-2017-0079/126475)
  • 12. Botor, D., Golonka, J., Anczkiewicz, A., Dunkl, I., Papiernik, B., Zając, J., Guzy, P., 2019. Burial and thermal history of the Lower Palaeozoic petroleum source rocks at the SW margin of the East European Craton (Poland). Annales Societatis Geologorum Poloniae, 89: 121-152.
  • 13. Brudy, M., Zoback, M.D., 1999. Drilling-induced tensile wall-fractures: implications for determination of in-situ stress orientation and magnitude. International Journal of Rock Mechanics and Mining Sciences, 36: 191-215.
  • 14. Buckley, S.J., Howell, J.A., Enge, H.D., Kurz, T.H., 2008. Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165: 625-638.
  • 15. Calner, M., Ahlberg, P., Lehnert, O., Erlström, M., 2013. The Lower Palaeozoic of southern Sweden and the Oslo Region, Norway. Field Guide for the 3rd Annual Meeting of the IGCP project 591. Sveriges geologiska undersökning Rapporter och meddelanden, 133: 96, https://lup.lub.lu.se/search/publication/13500fdc-e5e0-4a78-9f3d-d32bc2159f86
  • 16. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., 2008. MeshLab: an Open-Source Mesh Processing Tool. Eurographics Italian Chapter Conference 2008, Salerno, Italy: 129-136.
  • 17. CloudCompare, www.danielgm.net/cc/, access: 02.03.2020.
  • 18. Cocks, L.R.M., Torsvik, T.H., 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews, 72: 39-66.
  • 19. Corradetti, A., Tavani, S., Russo, M., Arbues, P.C., Granado, P., 2017. Quantitative analysis of folds by means of orthorectified photogrammetric 3D models: a case study from Mt. Catria, Northern Apennines, Italy. Photogrammetric Record, 32: 480-496.
  • 20. Dewez, T.J.B., Girardeau-Montaut, D., Allanic, C., Rohmer, J., 2016. Facets: a Cloudcompare Plugin to Extract Geological Planes from Unstructured 3d Point Clouds. XXIII ISPRS Congress, Commission V: 799-804, https://doi.org/10.5194/isprsarchives-XLI-B5-799-2016
  • 21. Enge, H.D., Buckley, S.J., Rotevatn, A., Howell, J.A., 2007. From outcrop to reservoir simulation model: Workflow and procedures. Geosphere, 3: 469-490.
  • 22. Engelder, T., Lash, G.G., Uzcátegui, R.S., 2009. Joint sets that enhance production from Middle and Upper Devonian gas shales of the Appalachian Basin. AAPG Bulletin, 93: 857-889.
  • 23. Engelder, T., Slingerland, R., Arthur, M., Lash, G., Kohl, D., Gold, D.P., 2011. An introduction to structures and stratigraphy in the proximal portion of the Middle Devonian Marcellus and Burket/Geneseo black shales in the Central Appalachian Valley and Ridge. From the Shield to the Sea: Geological Field Trips from the 2011 Joint Meeting of the GSA Northeastern and North-Central Sections: 17-44, https://doi.org/10.1130/2011.0020(02).
  • 24. English, J.M., 2012. Thermomechanical origin of regional fracture systems. AAPG Bulletin, 96: 1597-1625.
  • 25. Erlström, M., 2020. Carboniferous-Neogene tectonic evolution of the Fennoscandian transition zone, southern Sweden. Geological Society, London, Memoirs, 50: 603-620.
  • 26. Erlstrom, M., Thomas, S.A., Deeks, N., Sivhed, U., 1997. Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area. Tectonophysics, 271: 191-215.
  • 27. Franke, D., 1993. The southern border of Baltica - a review of the present state of knowledge. Precambrian Research, 64: 419-430.
  • 28. Furukawa, Y., Ponce, J., 2010. Accurate, dense and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32: 1362-1376.
  • 29. Gale, J.F.W., Laubach, S.E., Olson, J.E., Eichhuble, P., Fall, A., 2014. Natural fractures in shale: a review and new observations. AAPG Bulletin, 98: 2165-2216.
  • 30. GoogleEarth, https://www.google.com/earth/, access: 07.07.2020.
  • 31. Hansen, D.L., Nielsen, S.B., Lykke-Andersen, H., 2000. The post-Triassic evolution of the Sorgenfrei-Tornquist Zone - results from thermo-mechanical modelling. Tectonophysics, 328: 245-267.
  • 32. Hill, D., Lombardi, T., Martin, J., 2004. Fractured shale gas potential in New York. Northeastern Geology and Environmental Sciences, 26: 57-78.
  • 33. Japsen, P., Green, P.F., Bonow, J.M., Erlstrom, M., 2016. Episodic burial and exhumation of the southern Baltic Shield: epeirogenic uplifts during and after break-up of Pangaea. Gondwana Research, 35: 357-377.
  • 34. Jebara, T., Azarbayejani, A., Pentland, A., 1999. 3D structure from 2D motion. IEEE Signal Processing Magazine, 16: 66-84.
  • 35. Jordá Bordehore, L., Riquelme, A., Cano, M., Tomás, R., 2017. Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. International Journal of Rock Mechanics and Mining Sciences, 97: 24-32.
  • 36. Klawitter, M., Pistellato, D., Webster, A., Esterle, J., 2017. Application of photogrammetry for mapping of solution collapse breccia pipes on the Colorado Plateau, USA. Photogrammetric Record, 32: 443-458.
  • 37. Le Garzic, E., de L'Hamaide, T., Diraison, M., Géraud, Y., Sausse, J., de Urreiztieta, M., Hauville, B., Champanhet, J.-M., 2011. Scaling and geometric properties of extensional fracture systems in the proterozoic basement of Yemen. Tectonic interpretation and fluid flow implications. Journal of Structural Geology, 33: 519-536.
  • 38. Matyja, H., 2006. Stratigraphy and facies development of Devonian and Carboniferous deposits in the Pomeranian Basin and in the western part of the Baltic Basin and palaeogeography of the northern TESZ during Late Palaeozoic times (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 79-122.
  • 39. Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V., Lewandowski, M., 2015. Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica? Tectonics, 34: 2465-2477.
  • 40. Mazur, S., Aleksandrowski, P., Gągała, Ł., Krzywiec, P., Żaba, J., Gaidzik, K., Sikora, R., 2020. Late Palaeozoic strike-slip tectonics versus oroclinal bending at the SW outskirts of Baltica: case of the Variscan belt's eastern end in Poland. International Journal of Earth Sciences, 109: 1133-1160.
  • 41. McCann, T., Pascal, C., Timmerman, M.J., Krzywiec, P., López-Gómez, J., Wetzel, L., Krawczyk, C.M., Rieke, H., Lamarche, J., 2006. Post-Variscan (end Carboniferous-Early Permian) basin evolution in Western and Central Europe. Geological Society, Memoirs, 32: 355-388.
  • 42. Mehlqvist, K., Steemans, P., Vajda, V., 2015. First evidence of Devonian strata in Sweden - a palynological investigation of Övedskloster drillcores 1 and 2, Skĺne, Sweden. Review of Palaeobotany and Palynology, 221: 144-159.
  • 43. Menegoni, N., Meisina, C., Perotti, C., Crozi, M., 2018. Analysis by UAV digital photogrammetry of folds and related fractures in the Monte Antola Flysch Formation (Ponte Organasco, Italy). Geosciences, 8: 299.
  • 44. Modliński, Z., Podhalańska, T., 2010. Outline of the lithology and depositional features of the lower Paleozoic strata in the Polish part of the Baltic region. Geological Quarterly, 54 (2): 109-121.
  • 45. Mogensen, T.E., Jensen, L.N., 1994. Cretaceous subsidence and inversion along the Tornquist Zone from Kattegat to the Egersund Basin. First Break, 12: 211-222.
  • 46. Nie, X., Zou, C., Pan, L., Huang, Z., Liu, D., 2013. Fracture analysis and determination of in-situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50-1370 m). Tectonophysics, 593: 161-171.
  • 47. Nielsen, A.T., 1995. Trilobite systematics, biostratigraphy and palaeoecology of the Lower Ordovician Komstad Limestone and Huk Formations, southern Scandinavia. Fossils and Strata, 38: 374.
  • 48. Osborne, M., J., Swarbrick, R., E., 1997. Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bulletin, 81: 1023-1041.
  • 49. Poprawa, P., 2019. Geological setting and Ediacaran-Palaeozoic evolution of the western slope of the East European Craton and adjacent regions. Annales Societatis Geologorum Poloniae, 89: 47-80.
  • 50. Poprawa, P., Šliaupa, S., Stephenson, R., Lazauskiené, J., 1999. Late Vendian-Early Paleozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314: 219-239.
  • 51. Samsu, A., Cruden, A.R., Micklethwaite, S., Grose, L., Vollgger, S.A., 2020. Scale matters: the influence of structural inheritance on fracture patterns. Journal of Structural Geology, 130: 103896.
  • 52. Sturzenegger, M., Stead, D., 2009. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106: 163-182.
  • 53. Thiele, S.T., Grose, L., Samsu, A., Micklethwaite, S., Vollgger, S.A., Cruden, A.R., 2017. Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data. Solid Earth, 8: 1241-1253.
  • 54. Thybo, H., 1997. Geophysical characteristics of the Tornquist Fan area, northwest Trans-European Suture Zone: indication of late Carboniferous to early Permian dextral transtension. Geological Magazine, 134: 597-606.
  • 55. Voigt, T., Kley, J., Voigt, S., 2021. Dawn and dusk of Late Cretaceous basin inversion in central Europe. Solid Earth, 12: 1443-1471.
  • 56. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. ‘Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314.
  • 57. Wu, C., SiftGPU: A GPU implementation of scale invariant feature transform (SIFT), http://cs.unc.edu/~ccwu/siftgpu, access: 23.02.2017.
  • 58. Wu, C., Agarwal, S., Curless, B., Seitz, S.M., 2011. Multicore bundle adjustment. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA: 3057-3064
  • 59. Ziegler, P.A., 1992. Geological Atlas of Western and Central Europe (2nd Edition). Geological Society of London, London.
  • 60. Zoback, M.D., Kohli, A.H., 2019. Unconventional Reservoir Geomechanics: Shale Gas, Tight Oil, and Induced Seismicity. Cambridge University Press, Cambridge.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c427d06b-4ced-4afe-bd12-5fa6b6cdba0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.