PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of FPXRF in the determinations of selected trace elements in historic mining soils in the Holy Cross Mts., south-central Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, concentrations of As, Cu, Mn, Pb, and Zn were determined in 231 samples of mine soils and spoils by field portable X-ray fluorescence (FPXRF), and by inductively coupled plasma-mass spectrometry (ICP-MS) as a comparison method. The use of both spectrometric methods allows for comparison of the total and aqua regia-extractable contents of elements. The study areas encompassed three historic metal-ore mining sites and one abandoned mine tailings site in the Holy Cross Mountains, in south-central Poland. Sample collection in these areas, which are characterized by various bedrock mineralogy and lithology and different anthropogenic impacts, enabled us to test the FPXRF performance for a wide range of element concentrations. The results of FPXRF and ICP-MS determinations were found to be significantly correlated with the highest r2 (coefficient of determination) value of 0.987–0.991 for Pb, irrespective of the soil mineralogy, bedrock lithology or concentration levels of this element. Overall, the FPXRF showed excellent performance in determining selected trace elements in contaminated soils.
Słowa kluczowe
Rocznik
Strony
248--256
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Jan Kochanowski University, Święokrzyska 15G, 25-406 Kielce, Poland
autor
  • Jan Kochanowski University, Święokrzyska 15G, 25-406 Kielce, Poland
  • Jan Kochanowski University, Święokrzyska 15G, 25-406 Kielce, Poland
Bibliografia
  • 1. Abreu, M.M., Matias, M.J., Magalhäes, M., Basto, M.J., 2008. Impacts on wa ter, soil and plants from the aban doned Miguel Vacas copper mine, Portugal. Journal of Geochemical Exploration, 96: 161-170.
  • 2. Bosco, G.L., 2013. Development and application of portable, hand-held X-ray fluorescence spectrometers. Trends in Analytical Chemistry, 45: 121-134.
  • 3. Camizuli, E., Monna, F., Bermond, A., Manouchehri, N., Besanęon, S., Losno, R., van Oort, F., Labanowski, J., Perreira, A., Chateau, C., Alibert, P., 2014. Impact of historie mining assessed in soils by kinetic extraction and lead isotopie ratios. The Science of the Total Environment, 472: 425-436.
  • 4. Carr, R., Zhang, Ch., Moles, N., Harder, M., 2008. Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyserand GIS. Environmental Geochemistry and Health, 30: 45-52.
  • 5. Drake, P.L., Lawryk, N.J., Ashley, K., Sussell, A.L. , Hazelwood, K.J. , Song , R. , 2003 . Evaluation of two portable lead-monitoring methods at mining sites. Journal of Hazardous Materials, 102: 29-38.
  • 6. EPAMethod 6200: field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. Availablefrom: http://www.epa.gov/SW-846/pdfs/6200.pdf
  • 7. Gal, J., Hursthouse, A., Cuthbert, S., 2007. Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland). Journal of Environmental Sciences and Health A, 42: 1263-1274.
  • 8. Gałuszka, A., 2007. A review of geochemical background concepts and an example using data from Poland. Environmental Geology, 52: 861-870.
  • 9. Gałuszka, A., Migaszewski, Z.M., Namieśnik, J., 2013 . The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends in Analytical Chemistry, 50: 78-84.
  • 10. Glanzman, R.K., Closs, L.G., 2007. Field portable X-ray fluorescence geochemical analysis - its contribution to onsite real-time project evaluation. In: Proceedings of Exploration 07 (ed.B. Milkereit): 291-301. Fifth Decennial International Conference on Mineral Exploration.
  • 11. Higueras, P., Oyarzun, R., Iraizoz, J.M., Lorenzo, S., Esbrí, J.M., Martínez-Coronado, A. , 2012 . Low-cost geochemical surveys for environmental studies in developing countries: Testing a field portable XRF instrument under quasi-realistic conditions. Journal of Geochemical Exploration, 113: 3-12.
  • 12. Hürkamp, K., Raab, T., Völkel, J., 2009. Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis. Geomorphology, 110: 28-36.
  • 13. Lavazzo, P., Ducci, D., Adamo, P., Trifuoggi, M., Migliozzi, A., Boni, M., 2012. Impact of past mining activity on the quality of water and soil in the High Moulouya Valley (Morocco). Water, Air, and Soil Pollution, 223: 573-589.
  • 14. Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants, 4th Ed. CRC Press, Boca-Raton.
  • 15. Kabata-Pendias, A., Mukherjee, A.B. , 2007. Trace Elements From Soil to Human. Springer, Berlin.
  • 16. Kalnicky, D.J., Singhvi, R., 2001. Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83: 93-122.
  • 17. Karczewska, A., Bogda, A., Gałka, B., Szulc, A., Czwarkiel, D., Duszyńska , D. , 2006 . Natural and anthropogenic soil enrichment in heavy metals in areas of former metallic ore mining in the Sudety Mts. Polish Journal of Soil Sciences, 39: 131-142.
  • 18. Kilbride, C., Poole, J., Hutchings, T.R., 2006. Acomparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Environmental Pollution, 143: 16-23.
  • 19. Loredo, J., Ordóńez, A., Alvarez, R., 2006. Environmental impact of toxic metals and metalloids from the Munon Cimero mercury-mining area (Asturias, Spain). Journal of Hazardous Materials, 136: 455-467.
  • 20. Markey, A. M., Clark, C. S., Succop, P. A., Roda , S., 2008 . Determination of the feasibility of using a portable X-ray fluorescence (XRF) analyzer in the field for measurement of lead content of sieved soil. Journal of Environmental Health, 70: 24-29.
  • 21. Mäkinen, E., Korhonen, M., Viskari, E.-L., Haapamäki, S., Järvinen, M. , Lu , L. , 2005. Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water, Air, and Soil Pollution, 171: 95-110.
  • 22. Melquiades, F.L., Appoloni, C.R., 2004. Application of XRF and field portable XRF for environmental analysis. Journal of Radioanalytical and Nuclear Chemistry, 262: 533-541.
  • 23. NIOSH Method 7702: lead by field portable XRF. Available from: http://www.cdc.gov/niosh/nmam/pdfs/7702.pdf.
  • 24. Potts , P.J. , West, M. , 2008 . Portable X-ray Fluorescence Spectrometry: Capabilities of In-Situ Analysis. The Royal Society of Chemistry Publishing.
  • 25. Raab, T., Hürkamp, K., Völkel, J., 2005. Detection and Quantification of Heavy metal Contamination in Alluvial Soils of Historic Mining Areas by Field Portable X-ray Fluorescence (FPXRF) Analysis. Proceed. Intern. Conf. on Problematic Soils May 25-27 of 2005, Famagusta, N. Cyprus: 299-306.
  • 26. Radu, T., Diamond, D., 2009. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Journal of Hazardous Materials, 171: 1168-1171.
  • 27. Razo, I., Carrizales, L., Castro-Larragoitia, J., Díaz-Barriga, F., Monroy, M., 2004. Arsenicand heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, and Soil Pollution, 152: 129-152.
  • 28. Sastre, J., Sahuquillo, A., Vidal, M., Rauret, G., 2002. Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462: 59-72.
  • 29. Smith K.S., Huyck, H.O.L., 1999 . An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. Society of Economic Geologists, Reviews in Economic Geology, 6A: 29-69.
  • 30. Stamm, J.F., Hoogestraat, G.K., 2012. Concentrations of selected metals in Quaternary-age fluvial deposits along the lower Cheyenne and middle Belle Fourche Rivers, western South Dakota, 2009-10. U.S. Geological Survey Data Series 695.
  • 31. USEPA, 2007. Method 6200 and Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. Overview.
  • 32. Wcisło, E., 2012. Polish soil quality standards versus risk-based soil screening levels for metals and arsenic. Human and Ecological Risk Assessment, 18: 569-587.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c42716df-4b95-42ac-8961-18d15fcdcda0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.