PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sliding mode control for longitudinal aircraft dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The control of the longitudinal aircraft dynamics is challenging because the mathematical model of aircraft is highly nonlinear. This paper considers a sliding mode control design based on linearization of the aircraft, with the pitch angle and elevator deflection as the trim variables. The design further exploits the decomposition of the aircraft dynamics into its short-period and phugoid approximations. The discrete-time variable structure system synthesis is performed on the base of the elevator transfer function short-period approximation. This control system contains a sliding mode controller, an observer, based on nominal aircraft model without finite zero and two additional control channels for the aircraft and for the aircraft model. The realised system is stable and robust for parameter and external disturbances.
Słowa kluczowe
Twórcy
  • University of Novi Sad, Faculty of Education, Sombor, Serbia
Bibliografia
  • [1] D.A. Caughe, “Introduction to aircraft stability and control course notes for M&AE 507”, Sibley School of Mechanical & Aerospace Engineering Cornell University Ithaca, New York, USA. 2011.
  • [2] P. Kvasnic, “Visualization of aircraft longitudinal-axis motion”, Computing and Informatics, vol. 33, 2014, 1168–1190.
  • [3] C. Roos, C. Doll, J.M. Biannic, “Flight control laws: recent advances in the evaluation of their robustness properties”, Journal of Aerospace Lab, vol. 4, 2012, 1–9.
  • [4] D. Pucci, “Analysis and Control of Aircraft Longitudinal Dynamics with Large Flight Envelopes“, Journal of Latex class file, vol. 14, no. 8, 2015, 1–16.
  • [5] S.N. Deepa, G. Sudha, “Longitudinal control of aircraft dynamics based on optimization of PID parameters”, Thermophysics and Aeromechanics, vol. 23, no. 2, 2016, 185–194. DOI: 10.1134/S0869864316020049.
  • [6] G. Sudha, S.N. Deepa, “Optimization for PID control parameters on pitch control of aircraft dynamics based on tuning methods”, Applied Mathematics and Information Sciences, vol. 10, no. 1, 2016, 343–350.DOI: 10.18576/amis/100136.
  • [7] N. Ives, R. Pacheco, D. Castro, R. Resende, P. Américo, A. Magalhães, “Stability control of an autonomous quadcopter through PID control law”, International Journal of Engineering Research and Application, vol. 5, no. 5, 2017, 7–10.
  • [8] M. Salem, M. Ali, S. Ashtiani, “Robust PID controller design for a modern type aircraft including handling quality evaluation”, American Journal of Aerospace Engineering, vol. 1, no. 1, 2014, 1–7.DOI: 10.11648/j.ajae.20140101.11.
  • [9] R. Zaeri, A. Ghanbarzadeh, B. Attaran, Z. Zaeri, “Fuzzy logic controller based pitch control of aircraft tuned with Bees algorithm”. In: Proceedings of the 2nd International Conference on Control Instrumentation and Automation (ICCIA), Shiraz University, Iran, 2011. DOI: 10.1109/ICCIAutom.2011.6356745.
  • [10] V.G. Nair, M.V. Dileep, K.R. Prahalad, “Design of fuzzy logic controller for lateral dynamics control of aircraft by considering the cross--coupling effect of yaw and roll on each other”, International Journal of Computer Applications, vol. 47, no. 13, 2012, 43–48. DOI: 10.5120/7252-0368.
  • [11] K.D.S. Raj, G. Tattikota, “Design of fuzzy logic controller for auto landing applications”, International Journal of Scientific and Research Publications, vol. 3, no. 5, 2013, 1–9.
  • [12] S. Udayakumar, R. Kalpana, “A supporting fuzzy logic controller based on UAV navigation”, International Journal of Multidisciplinary Research and Modern Education, vol. 1, no. 2, 2015, 208–210.
  • [13] J. Liu, X. Wang, Advanced sliding mode control for mechanical systems design – Analysis and MATLAB simulation, Springer, Berlin, 2011. DOI: 10.1007/978-3-642-20907-9.
  • [14] S. Seshagiri, E. Promtun, “Sliding Mode Control of F-16 Longitudinal Dynamics”. In: Proceedings of the American Control Conference, Washington, USA, 2008.
  • [15] H. Alwi, C. Edwards, “Fault tolerant longitudinal aircraft control using non-linear integral sliding mode”, IET Control Theory & Applications, vol. 8, no. 17, 2014, 1803–1814. DOI: 10.1049/iet-cta.2013.1029.
  • [16] L. Melkou, A. Rezoug, M. Hamerlain, “PID-terminal sliding mode control of aircraft UAV”, Proceedings of the UKSim-AMSS 8th European Modelling Symposium. Pisa, Italy, 2014. DOI: 10.1109/EMS.2014.97.
  • [17] N.B. Ammar, S. Bouallegue, J. Haggege, “Modeling and sliding mode control of a quadrotor unmanned aerial vehicle”. In: Proceedings of the 3rd international conference on automation, Control, Engineering and Computer science (ACECS’16), Hammamet, Tunisia, 2016.
  • [18] M.T. Hamayun, C. Edwards, H. Alwi, A. Bajodah, “A fault tolerant direct control allocation scheme with integral sliding mode”, International Journal of Applied Mathematical and Computer Science, vol. 25, no. 1, 2015, 93–102. DOI: 10.1515/amcs-2015-0007.
  • [19] C. Aguilar-Ibañez, “Stabilization of the PVTOL aircraft based on a sliding mode and a saturation function”, International Journal of Robust and Nonlinera Control, vol. 27, no. 5, 2017, 843–859.
  • [20] S. Lona, A. Kumar, “Discrete sliding mode control for the lateral dynamics of a UAV with minimum control surfaces”, International Journal of Industrial Electronics and Electrical Engineering, vol. 4, no. 1, 2016, 46–50.
  • [21] S. Govindaswamy, T. Floquet, S.K. Spurgeon, “Discrete time output feedback sliding mode tracking control for systems with uncertainties”, International journal of Robust and Nonlinear Control, vol. 4, no. 15, 2014, 2098–2211.
  • [22] H.J. Blakelock, Automatic control of aircraft and missiles. John Wiley & Sons, New York, USA, 1985.
  • [23] G. Golo, C. Milosavljevic, “Robust discrete-time chattering-free sliding mode control”, Systems and Control Letters, vol. 4, 2000, 19–28.
  • [24] C. Milosavljevic, “Variable structure systems of quasi-relay type with proportional-integral action”, Facta universitatis: Mechanics, Automatic Control and Robotics, vol. 2, no. 7, 1997, 301–314.
  • [25] R.M. Stojic, Digitalni sistemi upravljanja (Digital control systems), Publ.: Nauka, Belgrade, 1990 (in Serbian).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c418c246-78e8-4ff4-9f95-5683262952d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.