PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Detection of Internal Fingerprint Image Using Optical Coherence Tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, optical coherence tomography (OCT) has been tested as a contactless technique helpful for damaged or spoofed fingerprint recovery. Three dimensional OCT images cover the range from the skin surface to papillary region in upper dermis. The proposed method extracts from B-scans high intensity ridges in both air-epidermis and dermis-epidermis interfaces. The extraction is based on the localisation of two OCT signal peaks corresponding to these edges. The borders are spline smoothed in two orthogonal planes of the image space. The result images are presented and compared with camera views.
Twórcy
  • Lodz University of Technology
  • Lodz University of Technology
autor
  • Lodz University of Technology
Bibliografia
  • [1] Akbari N., Sadr A. (2012). Automation of Fingerprint Recognition Using OCT Fingerprint Images,
  • [2] Journal of Signal and Information Processing 3: 117-121
  • [3] Bossen A., Lehmann R., Meier C. (2010). Internal fingerprint identification with optical coherence tomography, IEEE Photonics Technology Letters 22(7): 507-509
  • [4] Chang S., Sherif S., Mao Y., Flueraru C. (2008). Large Area Full-Field Optical Coherence Tomography and its Applications, The Open Optics Journal 2: 10-20
  • [5] Cheng Y., Larin K. V. (2006). Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis, Applied Optics 45(36): 9238-9245
  • [6] Darlow L., Connan J. (2015). Efficient internal and surface fingerprint extraction and blending using optical coherence tomography, Applied Optics 54: 9258-9268
  • [7] Darlow L., Connan J., Akhoury S.S. (2015). Internal fingerprint zone detection in optical coherence tomography fingertip scans, Journal of Electronic Imaging 24(2): 023027 1-14
  • [8] Drexler W., Fujimoto J. G. (2008). Optical coherence tomography: technology and applications, Springer International Publishing 2571
  • [9] Dubois A., Grieve K., Moneron G., Lecaque R., Vabre L., Boccara C. (2004). Ultrahigh-resolution full-field optical coherence tomography, Applied Optics 43(14): 2874-2883
  • [10] ITK, (2017). ITK - Segmentation & Registration Toolkit, https://itk.org/
  • [11] ITK 4.12.0, (2017). ITK - CurvatureAnisotropicDiffusion ImageFilter, Class Template Reference, https://itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
  • [12] Liu G., Chen Z. (2013). Capturing the vital vascular fingerprint with optical coherence tomography, Applied Optics 52(22): 5473-5477
  • [13] Loupas T., McDicken W. N., Allan P. L. (1987). Noise reduction in ultrasonic images by digital filtering, British Journal of Radiology 60(712): 389-392
  • [14] Malik K., Smołka B. (2012). Improved bilateral filtering scheme for noise removal in color images. In The International Conference on Informatics and Applications (ICIA2012)
  • [15] Malik K., Machala B., Smołka B. (2015). Noise reduction in ultrasound images based on the concept of local neighborhood exploration, Image Processing & Communications Challenges 6, Advances in Intelligent Systems and Computing 313: 103-110
  • [16] Maltoni D., Maio D., Jain A. K., Prabhakar S. (2003). Hand-book of Fingerprint Recognition, Springer, Berlin
  • [17] MathWorks Inc., (2017). csaps, https://www.mathworks.com/help/curvefit/csaps.html
  • [18] MathWorks Inc., (2017). Curve Fitting Toolbox, https://www.mathworks.com/help/curvefit/
  • [19] MathWorks Inc., (2017). findpeaks, https://www.mathworks.com/help/signal/ref/findpeaks.html
  • [20] MathWorks Inc., (2017). Matlab coder, https://www.mathworks.com/products/matlab-coder.html
  • [21] MathWorks Inc., (2017). Signal Processing Toolbox, https://www.mathworks.comhelp/signal/
  • [22] Matsumoto T., Matsumoto H., Yamada K., Hoshino S. (2003). Impact of Artificial Gummy Fingers on Finger-print Systems, Proceedings of SPIE 4677: 275-289
  • [23] Michailowich O., Tannenbaum A., (2006). Despeckling of medical ultrasound images, IEEE
  • [24] Transactions on Ultrasonic, Ferroelectric, Frequency Control 53(1): 64-78
  • [25] MIT - Massachusetts Institute of Technology, (2017). Stability of Finite Difference Methods - MIT, http://web.mit.edu/16.90/BackUp/www/pdfs/Chapter14
  • [26] Perona P., Malik J. (2006). Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 7(12): 629-639
  • [27] Vizcaya P. R., Gerhardt L. A. (1996). Nonlinear Orientation Model for Global Description of Fingerprints, Pattern Recognition 29(7): 1221-1232
  • [28] Whitaker R. T., Xue X. (2001). Variableconductance, level-set curvature for image denoising, Proceedings of International Conference on Image Processing (3): 142-145
  • [29] Yu Y., Acton S. T. (2002). Speckle reducing anisotropic diffusion, IEEE Transactions on Image Processing 11(11): 1260-1270
  • [30] Zhou Z., Guo Z., Dong G., Sun J., Zhang D., Wu B. (2015). A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Transactions on Image Processing 24(1): 249-258.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c417307c-feb8-445f-be05-bcf87e228963
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.